import sys from pathlib import Path import torch from hloc import MODEL_REPO_ID, logger from ..utils.base_model import BaseModel lib_path = Path(__file__).parent / "../../third_party" sys.path.append(str(lib_path)) from lanet.network_v0.model import PointModel lanet_path = Path(__file__).parent / "../../third_party/lanet" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class LANet(BaseModel): default_conf = { "model_name": "PointModel_v0.pth", "keypoint_threshold": 0.1, "max_keypoints": 1024, } required_inputs = ["image"] def _init(self, conf): logger.info("Loading LANet model...") model_path = self._download_model( repo_id=MODEL_REPO_ID, filename="{}/{}".format( Path(__file__).stem, self.conf["model_name"] ), ) self.net = PointModel(is_test=True) state_dict = torch.load(model_path, map_location="cpu") self.net.load_state_dict(state_dict["model_state"]) logger.info("Load LANet model done.") def _forward(self, data): image = data["image"] keypoints, scores, descriptors = self.net(image) _, _, Hc, Wc = descriptors.shape # Scores & Descriptors kpts_score = torch.cat([keypoints, scores], dim=1).view(3, -1).t() descriptors = descriptors.view(256, Hc, Wc).view(256, -1).t() # Filter based on confidence threshold descriptors = descriptors[ kpts_score[:, 0] > self.conf["keypoint_threshold"], : ] kpts_score = kpts_score[ kpts_score[:, 0] > self.conf["keypoint_threshold"], : ] keypoints = kpts_score[:, 1:] scores = kpts_score[:, 0] idxs = scores.argsort()[-self.conf["max_keypoints"] or None :] keypoints = keypoints[idxs, :2] descriptors = descriptors[idxs] scores = scores[idxs] return { "keypoints": keypoints[None], "scores": scores[None], "descriptors": descriptors.T[None], }