import sys from pathlib import Path import torchvision.transforms as tvf from .. import MODEL_REPO_ID, logger from ..utils.base_model import BaseModel tp_path = Path(__file__).parent / "../../third_party" sys.path.append(str(tp_path)) from pram.nets.sfd2 import load_sfd2 class SFD2(BaseModel): default_conf = { "max_keypoints": 4096, "model_name": "sfd2_20230511_210205_resnet4x.79.pth", "conf_th": 0.001, } required_inputs = ["image"] def _init(self, conf): self.conf = {**self.default_conf, **conf} self.norm_rgb = tvf.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) model_path = self._download_model( repo_id=MODEL_REPO_ID, filename="{}/{}".format( "pram", self.conf["model_name"] ), ) self.net = load_sfd2(weight_path=model_path).eval() logger.info("Load SFD2 model done.") def _forward(self, data): pred = self.net.extract_local_global( data={"image": self.norm_rgb(data["image"])}, config=self.conf ) out = { "keypoints": pred["keypoints"][0][None], "scores": pred["scores"][0][None], "descriptors": pred["descriptors"][0][None], } return out