import torch import torch.nn as nn from .lcnn_hourglass import MultitaskHead, hg class HourglassBackbone(nn.Module): """Hourglass backbone.""" def __init__( self, input_channel=1, depth=4, num_stacks=2, num_blocks=1, num_classes=5 ): super(HourglassBackbone, self).__init__() self.head = MultitaskHead self.net = hg( **{ "head": self.head, "depth": depth, "num_stacks": num_stacks, "num_blocks": num_blocks, "num_classes": num_classes, "input_channels": input_channel, } ) def forward(self, input_images): return self.net(input_images)[1] class SuperpointBackbone(nn.Module): """SuperPoint backbone.""" def __init__(self): super(SuperpointBackbone, self).__init__() self.relu = torch.nn.ReLU(inplace=True) self.pool = torch.nn.MaxPool2d(kernel_size=2, stride=2) c1, c2, c3, c4 = 64, 64, 128, 128 # Shared Encoder. self.conv1a = torch.nn.Conv2d(1, c1, kernel_size=3, stride=1, padding=1) self.conv1b = torch.nn.Conv2d(c1, c1, kernel_size=3, stride=1, padding=1) self.conv2a = torch.nn.Conv2d(c1, c2, kernel_size=3, stride=1, padding=1) self.conv2b = torch.nn.Conv2d(c2, c2, kernel_size=3, stride=1, padding=1) self.conv3a = torch.nn.Conv2d(c2, c3, kernel_size=3, stride=1, padding=1) self.conv3b = torch.nn.Conv2d(c3, c3, kernel_size=3, stride=1, padding=1) self.conv4a = torch.nn.Conv2d(c3, c4, kernel_size=3, stride=1, padding=1) self.conv4b = torch.nn.Conv2d(c4, c4, kernel_size=3, stride=1, padding=1) def forward(self, input_images): # Shared Encoder. x = self.relu(self.conv1a(input_images)) x = self.relu(self.conv1b(x)) x = self.pool(x) x = self.relu(self.conv2a(x)) x = self.relu(self.conv2b(x)) x = self.pool(x) x = self.relu(self.conv3a(x)) x = self.relu(self.conv3b(x)) x = self.pool(x) x = self.relu(self.conv4a(x)) x = self.relu(self.conv4b(x)) return x