# %BANNER_BEGIN% # --------------------------------------------------------------------- # %COPYRIGHT_BEGIN% # # Magic Leap, Inc. ("COMPANY") CONFIDENTIAL # # Unpublished Copyright (c) 2020 # Magic Leap, Inc., All Rights Reserved. # # NOTICE: All information contained herein is, and remains the property # of COMPANY. The intellectual and technical concepts contained herein # are proprietary to COMPANY and may be covered by U.S. and Foreign # Patents, patents in process, and are protected by trade secret or # copyright law. Dissemination of this information or reproduction of # this material is strictly forbidden unless prior written permission is # obtained from COMPANY. Access to the source code contained herein is # hereby forbidden to anyone except current COMPANY employees, managers # or contractors who have executed Confidentiality and Non-disclosure # agreements explicitly covering such access. # # The copyright notice above does not evidence any actual or intended # publication or disclosure of this source code, which includes # information that is confidential and/or proprietary, and is a trade # secret, of COMPANY. ANY REPRODUCTION, MODIFICATION, DISTRIBUTION, # PUBLIC PERFORMANCE, OR PUBLIC DISPLAY OF OR THROUGH USE OF THIS # SOURCE CODE WITHOUT THE EXPRESS WRITTEN CONSENT OF COMPANY IS # STRICTLY PROHIBITED, AND IN VIOLATION OF APPLICABLE LAWS AND # INTERNATIONAL TREATIES. THE RECEIPT OR POSSESSION OF THIS SOURCE # CODE AND/OR RELATED INFORMATION DOES NOT CONVEY OR IMPLY ANY RIGHTS # TO REPRODUCE, DISCLOSE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE, # USE, OR SELL ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN PART. # # %COPYRIGHT_END% # ---------------------------------------------------------------------- # %AUTHORS_BEGIN% # # Originating Authors: Paul-Edouard Sarlin # # %AUTHORS_END% # --------------------------------------------------------------------*/ # %BANNER_END% from pathlib import Path import torch from torch import nn import numpy as np import cv2 import torch.nn.functional as F def simple_nms(scores, nms_radius: int): """ Fast Non-maximum suppression to remove nearby points """ assert (nms_radius >= 0) def max_pool(x): return torch.nn.functional.max_pool2d( x, kernel_size=nms_radius * 2 + 1, stride=1, padding=nms_radius) zeros = torch.zeros_like(scores) max_mask = scores == max_pool(scores) for _ in range(2): supp_mask = max_pool(max_mask.float()) > 0 supp_scores = torch.where(supp_mask, zeros, scores) new_max_mask = supp_scores == max_pool(supp_scores) max_mask = max_mask | (new_max_mask & (~supp_mask)) return torch.where(max_mask, scores, zeros) def remove_borders(keypoints, scores, border: int, height: int, width: int): """ Removes keypoints too close to the border """ mask_h = (keypoints[:, 0] >= border) & (keypoints[:, 0] < (height - border)) mask_w = (keypoints[:, 1] >= border) & (keypoints[:, 1] < (width - border)) mask = mask_h & mask_w return keypoints[mask], scores[mask] def top_k_keypoints(keypoints, scores, k: int): if k >= len(keypoints): return keypoints, scores scores, indices = torch.topk(scores, k, dim=0) return keypoints[indices], scores def sample_descriptors(keypoints, descriptors, s: int = 8): """ Interpolate descriptors at keypoint locations """ b, c, h, w = descriptors.shape keypoints = keypoints - s / 2 + 0.5 keypoints /= torch.tensor([(w * s - s / 2 - 0.5), (h * s - s / 2 - 0.5)], ).to(keypoints)[None] keypoints = keypoints * 2 - 1 # normalize to (-1, 1) args = {'align_corners': True} if int(torch.__version__[2]) > 2 else {} descriptors = torch.nn.functional.grid_sample( descriptors, keypoints.view(b, 1, -1, 2), mode='bilinear', **args) descriptors = torch.nn.functional.normalize( descriptors.reshape(b, c, -1), p=2, dim=1) return descriptors class SuperPoint(nn.Module): """SuperPoint Convolutional Detector and Descriptor SuperPoint: Self-Supervised Interest Point Detection and Description. Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. In CVPRW, 2019. https://arxiv.org/abs/1712.07629 """ default_config = { 'descriptor_dim': 256, 'nms_radius': 3, 'keypoint_threshold': 0.001, 'max_keypoints': -1, 'min_keypoints': 32, 'remove_borders': 4, } def __init__(self, config): super().__init__() self.config = {**self.default_config, **config} self.relu = nn.ReLU(inplace=True) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) c1, c2, c3, c4, c5 = 64, 64, 128, 128, 256 self.conv1a = nn.Conv2d(1, c1, kernel_size=3, stride=1, padding=1) self.conv1b = nn.Conv2d(c1, c1, kernel_size=3, stride=1, padding=1) # 64 self.conv2a = nn.Conv2d(c1, c2, kernel_size=3, stride=1, padding=1) self.conv2b = nn.Conv2d(c2, c2, kernel_size=3, stride=1, padding=1) # 64 self.conv3a = nn.Conv2d(c2, c3, kernel_size=3, stride=1, padding=1) self.conv3b = nn.Conv2d(c3, c3, kernel_size=3, stride=1, padding=1) # 128 self.conv4a = nn.Conv2d(c3, c4, kernel_size=3, stride=1, padding=1) self.conv4b = nn.Conv2d(c4, c4, kernel_size=3, stride=1, padding=1) # 128 self.convPa = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1) # 256 self.convPb = nn.Conv2d(c5, 65, kernel_size=1, stride=1, padding=0) self.convDa = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1) # 256 self.convDb = nn.Conv2d( c5, self.config['descriptor_dim'], kernel_size=1, stride=1, padding=0) # path = Path(__file__).parent / 'weights/superpoint_v1.pth' path = config['weight_path'] self.load_state_dict(torch.load(str(path), map_location='cpu'), strict=True) mk = self.config['max_keypoints'] if mk == 0 or mk < -1: raise ValueError('\"max_keypoints\" must be positive or \"-1\"') print('Loaded SuperPoint model') def extract_global(self, data): # Shared Encoder x0 = self.relu(self.conv1a(data['image'])) x0 = self.relu(self.conv1b(x0)) x0 = self.pool(x0) x1 = self.relu(self.conv2a(x0)) x1 = self.relu(self.conv2b(x1)) x1 = self.pool(x1) x2 = self.relu(self.conv3a(x1)) x2 = self.relu(self.conv3b(x2)) x2 = self.pool(x2) x3 = self.relu(self.conv4a(x2)) x3 = self.relu(self.conv4b(x3)) x4 = self.relu(self.convDa(x3)) # print('ex_g: ', x0.shape, x1.shape, x2.shape, x3.shape, x4.shape) return [x0, x1, x2, x3, x4] def extract_local_global(self, data): # Shared Encoder b, ic, ih, iw = data['image'].shape x0 = self.relu(self.conv1a(data['image'])) x0 = self.relu(self.conv1b(x0)) x0 = self.pool(x0) x1 = self.relu(self.conv2a(x0)) x1 = self.relu(self.conv2b(x1)) x1 = self.pool(x1) x2 = self.relu(self.conv3a(x1)) x2 = self.relu(self.conv3b(x2)) x2 = self.pool(x2) x3 = self.relu(self.conv4a(x2)) x3 = self.relu(self.conv4b(x3)) # Compute the dense keypoint scores cPa = self.relu(self.convPa(x3)) score = self.convPb(cPa) score = torch.nn.functional.softmax(score, 1)[:, :-1] # print(scores.shape) b, _, h, w = score.shape score = score.permute(0, 2, 3, 1).reshape(b, h, w, 8, 8) score = score.permute(0, 1, 3, 2, 4).reshape(b, h * 8, w * 8) score = torch.nn.functional.interpolate(score.unsqueeze(1), size=(ih, iw), align_corners=True, mode='bilinear') score = score.squeeze(1) # extract kpts nms_scores = simple_nms(scores=score, nms_radius=self.config['nms_radius']) keypoints = [ torch.nonzero(s >= self.config['keypoint_threshold']) for s in nms_scores] scores = [s[tuple(k.t())] for s, k in zip(nms_scores, keypoints)] if len(scores[0]) <= self.config['min_keypoints']: keypoints = [ torch.nonzero(s >= self.config['keypoint_threshold'] * 0.5) for s in nms_scores] scores = [s[tuple(k.t())] for s, k in zip(nms_scores, keypoints)] # Discard keypoints near the image borders keypoints, scores = list(zip(*[ remove_borders(k, s, self.config['remove_borders'], ih, iw) for k, s in zip(keypoints, scores)])) # Keep the k keypoints with the highest score if self.config['max_keypoints'] >= 0: keypoints, scores = list(zip(*[ top_k_keypoints(k, s, self.config['max_keypoints']) for k, s in zip(keypoints, scores)])) # Convert (h, w) to (x, y) keypoints = [torch.flip(k, [1]).float() for k in keypoints] # Compute the dense descriptors cDa = self.relu(self.convDa(x3)) desc_map = self.convDb(cDa) desc_map = torch.nn.functional.normalize(desc_map, p=2, dim=1) descriptors = [sample_descriptors(k[None], d[None], 8)[0] for k, d in zip(keypoints, desc_map)] return { 'score_map': score, 'desc_map': desc_map, 'mid_features': cDa, # 256 'global_descriptors': [x0, x1, x2, x3, cDa], 'keypoints': keypoints, 'scores': scores, 'descriptors': descriptors, } def sample(self, score_map, semi_descs, kpts, s=8, norm_desc=True): # print('sample: ', score_map.shape, semi_descs.shape, kpts.shape) b, c, h, w = semi_descs.shape norm_kpts = kpts - s / 2 + 0.5 norm_kpts = norm_kpts / torch.tensor([(w * s - s / 2 - 0.5), (h * s - s / 2 - 0.5)], ).to(norm_kpts)[None] norm_kpts = norm_kpts * 2 - 1 # args = {'align_corners': True} if int(torch.__version__[2]) > 2 else {} descriptors = torch.nn.functional.grid_sample( semi_descs, norm_kpts.view(b, 1, -1, 2), mode='bilinear', align_corners=True) if norm_desc: descriptors = torch.nn.functional.normalize( descriptors.reshape(b, c, -1), p=2, dim=1) else: descriptors = descriptors.reshape(b, c, -1) # print('max: ', torch.min(kpts[:, 1].long()), torch.max(kpts[:, 1].long()), torch.min(kpts[:, 0].long()), # torch.max(kpts[:, 0].long())) scores = score_map[0, kpts[:, 1].long(), kpts[:, 0].long()] return scores, descriptors.squeeze(0) def extract(self, data): """ Compute keypoints, scores, descriptors for image """ # Shared Encoder x = self.relu(self.conv1a(data['image'])) x = self.relu(self.conv1b(x)) x = self.pool(x) x = self.relu(self.conv2a(x)) x = self.relu(self.conv2b(x)) x = self.pool(x) x = self.relu(self.conv3a(x)) x = self.relu(self.conv3b(x)) x = self.pool(x) x = self.relu(self.conv4a(x)) x = self.relu(self.conv4b(x)) # Compute the dense keypoint scores cPa = self.relu(self.convPa(x)) scores = self.convPb(cPa) scores = torch.nn.functional.softmax(scores, 1)[:, :-1] b, _, h, w = scores.shape scores = scores.permute(0, 2, 3, 1).reshape(b, h, w, 8, 8) scores = scores.permute(0, 1, 3, 2, 4).reshape(b, h * 8, w * 8) # Compute the dense descriptors cDa = self.relu(self.convDa(x)) descriptors = self.convDb(cDa) descriptors = torch.nn.functional.normalize(descriptors, p=2, dim=1) return scores, descriptors def det(self, image): """ Compute keypoints, scores, descriptors for image """ # Shared Encoder x = self.relu(self.conv1a(image)) x = self.relu(self.conv1b(x)) x = self.pool(x) x = self.relu(self.conv2a(x)) x = self.relu(self.conv2b(x)) x = self.pool(x) x = self.relu(self.conv3a(x)) x = self.relu(self.conv3b(x)) x = self.pool(x) x = self.relu(self.conv4a(x)) x = self.relu(self.conv4b(x)) # Compute the dense keypoint scores cPa = self.relu(self.convPa(x)) scores = self.convPb(cPa) scores = torch.nn.functional.softmax(scores, 1)[:, :-1] # print(scores.shape) b, _, h, w = scores.shape scores = scores.permute(0, 2, 3, 1).reshape(b, h, w, 8, 8) scores = scores.permute(0, 1, 3, 2, 4).reshape(b, h * 8, w * 8) # Compute the dense descriptors cDa = self.relu(self.convDa(x)) descriptors = self.convDb(cDa) descriptors = torch.nn.functional.normalize(descriptors, p=2, dim=1) return scores, descriptors def forward(self, data): """ Compute keypoints, scores, descriptors for image """ # Shared Encoder x = self.relu(self.conv1a(data['image'])) x = self.relu(self.conv1b(x)) x = self.pool(x) x = self.relu(self.conv2a(x)) x = self.relu(self.conv2b(x)) x = self.pool(x) x = self.relu(self.conv3a(x)) x = self.relu(self.conv3b(x)) x = self.pool(x) x = self.relu(self.conv4a(x)) x = self.relu(self.conv4b(x)) # Compute the dense keypoint scores cPa = self.relu(self.convPa(x)) scores = self.convPb(cPa) scores = torch.nn.functional.softmax(scores, 1)[:, :-1] # print(scores.shape) b, _, h, w = scores.shape scores = scores.permute(0, 2, 3, 1).reshape(b, h, w, 8, 8) scores = scores.permute(0, 1, 3, 2, 4).reshape(b, h * 8, w * 8) scores = simple_nms(scores, self.config['nms_radius']) # Extract keypoints keypoints = [ torch.nonzero(s > self.config['keypoint_threshold']) for s in scores] scores = [s[tuple(k.t())] for s, k in zip(scores, keypoints)] # Discard keypoints near the image borders keypoints, scores = list(zip(*[ remove_borders(k, s, self.config['remove_borders'], h * 8, w * 8) for k, s in zip(keypoints, scores)])) # Keep the k keypoints with highest score if self.config['max_keypoints'] >= 0: keypoints, scores = list(zip(*[ top_k_keypoints(k, s, self.config['max_keypoints']) for k, s in zip(keypoints, scores)])) # Convert (h, w) to (x, y) keypoints = [torch.flip(k, [1]).float() for k in keypoints] # Compute the dense descriptors cDa = self.relu(self.convDa(x)) descriptors = self.convDb(cDa) descriptors = torch.nn.functional.normalize(descriptors, p=2, dim=1) # Extract descriptors # print(keypoints[0].shape) descriptors = [sample_descriptors(k[None], d[None], 8)[0] for k, d in zip(keypoints, descriptors)] return { 'keypoints': keypoints, 'scores': scores, 'descriptors': descriptors, 'global_descriptor': x, } def extract_descriptor(sample_pts, coarse_desc, H, W): ''' :param samplt_pts: :param coarse_desc: :return: ''' with torch.no_grad(): norm_sample_pts = torch.zeros_like(sample_pts) norm_sample_pts[0, :] = (sample_pts[0, :] / (float(W) / 2.)) - 1. # x norm_sample_pts[1, :] = (sample_pts[1, :] / (float(H) / 2.)) - 1. # y norm_sample_pts = norm_sample_pts.transpose(0, 1).contiguous() norm_sample_pts = norm_sample_pts.view(1, 1, -1, 2).float() sample_desc = torch.nn.functional.grid_sample(coarse_desc[None], norm_sample_pts, mode='bilinear', align_corners=False) sample_desc = torch.nn.functional.normalize(sample_desc, dim=1).squeeze(2).squeeze(0) return sample_desc def extract_sp_return(model, img, conf_th=0.005, mask=None, topK=-1, **kwargs): old_bm = torch.backends.cudnn.benchmark torch.backends.cudnn.benchmark = False # speedup # print(img.shape) img = img.cuda() # if len(img.shape) == 3: # gray image # img = img[None] B, one, H, W = img.shape all_pts = [] all_descs = [] if 'scales' in kwargs.keys(): scales = kwargs.get('scales') else: scales = [1.0] for s in scales: if s == 1.0: new_img = img else: nh = int(H * s) nw = int(W * s) new_img = F.interpolate(img, size=(nh, nw), mode='bilinear', align_corners=True) nh, nw = new_img.shape[2:] with torch.no_grad(): heatmap, coarse_desc = model.det(new_img) # print("nh, nw, heatmap, desc: ", nh, nw, heatmap.shape, coarse_desc.shape) if len(heatmap.size()) == 3: heatmap = heatmap.unsqueeze(1) if len(heatmap.size()) == 2: heatmap = heatmap.unsqueeze(0) heatmap = heatmap.unsqueeze(1) # print(heatmap.shape) if heatmap.size(2) != nh or heatmap.size(3) != nw: heatmap = F.interpolate(heatmap, size=[nh, nw], mode='bilinear', align_corners=True) conf_thresh = conf_th nms_dist = 4 border_remove = 4 scores = simple_nms(heatmap, nms_radius=nms_dist) keypoints = [ torch.nonzero(s > conf_thresh) for s in scores] scores = [s[tuple(k.t())] for s, k in zip(scores, keypoints)] # print(keypoints[0].shape) keypoints = [torch.flip(k, [1]).float() for k in keypoints] scores = scores[0].data.cpu().numpy().squeeze() keypoints = keypoints[0].data.cpu().numpy().squeeze() pts = keypoints.transpose() pts[2, :] = scores inds = np.argsort(pts[2, :]) pts = pts[:, inds[::-1]] # Sort by confidence. # Remove points along border. bord = border_remove toremoveW = np.logical_or(pts[0, :] < bord, pts[0, :] >= (W - bord)) toremoveH = np.logical_or(pts[1, :] < bord, pts[1, :] >= (H - bord)) toremove = np.logical_or(toremoveW, toremoveH) pts = pts[:, ~toremove] # valid_idex = heatmap > conf_thresh # valid_score = heatmap[valid_idex] # """ # --- Process descriptor. # coarse_desc = coarse_desc.data.cpu().numpy().squeeze() D = coarse_desc.size(1) if pts.shape[1] == 0: desc = np.zeros((D, 0)) else: if coarse_desc.size(2) == nh and coarse_desc.size(3) == nw: desc = coarse_desc[:, :, pts[1, :], pts[0, :]] desc = desc.data.cpu().numpy().reshape(D, -1) else: # Interpolate into descriptor map using 2D point locations. samp_pts = torch.from_numpy(pts[:2, :].copy()) samp_pts[0, :] = (samp_pts[0, :] / (float(nw) / 2.)) - 1. samp_pts[1, :] = (samp_pts[1, :] / (float(nh) / 2.)) - 1. samp_pts = samp_pts.transpose(0, 1).contiguous() samp_pts = samp_pts.view(1, 1, -1, 2) samp_pts = samp_pts.float() samp_pts = samp_pts.cuda() desc = torch.nn.functional.grid_sample(coarse_desc, samp_pts, mode='bilinear', align_corners=True) desc = desc.data.cpu().numpy().reshape(D, -1) desc /= np.linalg.norm(desc, axis=0)[np.newaxis, :] if pts.shape[1] == 0: continue # print(pts.shape, heatmap.shape, new_img.shape, img.shape, nw, nh, W, H) pts[0, :] = pts[0, :] * W / nw pts[1, :] = pts[1, :] * H / nh all_pts.append(np.transpose(pts, [1, 0])) all_descs.append(np.transpose(desc, [1, 0])) all_pts = np.vstack(all_pts) all_descs = np.vstack(all_descs) torch.backends.cudnn.benchmark = old_bm if all_pts.shape[0] == 0: return None, None, None keypoints = all_pts[:, 0:2] scores = all_pts[:, 2] descriptors = all_descs if mask is not None: # cv2.imshow("mask", mask) # cv2.waitKey(0) labels = [] others = [] keypoints_with_labels = [] scores_with_labels = [] descriptors_with_labels = [] keypoints_without_labels = [] scores_without_labels = [] descriptors_without_labels = [] id_img = np.int32(mask[:, :, 2]) * 256 * 256 + np.int32(mask[:, :, 1]) * 256 + np.int32(mask[:, :, 0]) # print(img.shape, id_img.shape) for i in range(keypoints.shape[0]): x = keypoints[i, 0] y = keypoints[i, 1] # print("x-y", x, y, int(x), int(y)) gid = id_img[int(y), int(x)] if gid == 0: keypoints_without_labels.append(keypoints[i]) scores_without_labels.append(scores[i]) descriptors_without_labels.append(descriptors[i]) others.append(0) else: keypoints_with_labels.append(keypoints[i]) scores_with_labels.append(scores[i]) descriptors_with_labels.append(descriptors[i]) labels.append(gid) if topK > 0: if topK <= len(keypoints_with_labels): idxes = np.array(scores_with_labels, float).argsort()[::-1][:topK] keypoints = np.array(keypoints_with_labels, float)[idxes] scores = np.array(scores_with_labels, float)[idxes] labels = np.array(labels, np.int32)[idxes] descriptors = np.array(descriptors_with_labels, float)[idxes] elif topK >= len(keypoints_with_labels) + len(keypoints_without_labels): # keypoints = np.vstack([keypoints_with_labels, keypoints_without_labels]) # scores = np.vstack([scorescc_with_labels, scores_without_labels]) # descriptors = np.vstack([descriptors_with_labels, descriptors_without_labels]) # labels = np.vstack([labels, others]) keypoints = keypoints_with_labels scores = scores_with_labels descriptors = descriptors_with_labels for i in range(len(others)): keypoints.append(keypoints_without_labels[i]) scores.append(scores_without_labels[i]) descriptors.append(descriptors_without_labels[i]) labels.append(others[i]) else: n = topK - len(keypoints_with_labels) idxes = np.array(scores_without_labels, float).argsort()[::-1][:n] keypoints = keypoints_with_labels scores = scores_with_labels descriptors = descriptors_with_labels for i in idxes: keypoints.append(keypoints_without_labels[i]) scores.append(scores_without_labels[i]) descriptors.append(descriptors_without_labels[i]) labels.append(others[i]) keypoints = np.array(keypoints, float) descriptors = np.array(descriptors, float) # print(keypoints.shape, descriptors.shape) return {"keypoints": np.array(keypoints, float), "descriptors": np.array(descriptors, float), "scores": np.array(scores, float), "labels": np.array(labels, np.int32), } else: # print(topK) if topK > 0: idxes = np.array(scores, dtype=float).argsort()[::-1][:topK] keypoints = np.array(keypoints[idxes], dtype=float) scores = np.array(scores[idxes], dtype=float) descriptors = np.array(descriptors[idxes], dtype=float) keypoints = np.array(keypoints, dtype=float) scores = np.array(scores, dtype=float) descriptors = np.array(descriptors, dtype=float) # print(keypoints.shape, descriptors.shape) return {"keypoints": np.array(keypoints, dtype=float), "descriptors": descriptors, "scores": scores, }