import torch def to_view(data, i): return {k + i: v for k, v in data.items()} def get_view(data, i): data_g = {k: v for k, v in data.items() if not k[-1].isnumeric()} data_i = {k[:-1]: v for k, v in data.items() if k[-1] == i} return {**data_g, **data_i} def get_twoview(data, idx): li = idx[0] ri = idx[-1] assert idx == f"{li}to{ri}" data_lr = {k[:-4] + "0to1": v for k, v in data.items() if k[-4:] == f"{li}to{ri}"} data_rl = {k[:-4] + "1to0": v for k, v in data.items() if k[-4:] == f"{ri}ito{li}"} data_l = { k[:-1] + "0": v for k, v in data.items() if k[-1:] == li and k[-3:-1] != "to" } data_r = { k[:-1] + "1": v for k, v in data.items() if k[-1:] == ri and k[-3:-1] != "to" } return {**data_lr, **data_rl, **data_l, **data_r} def stack_twoviews(data, indices=["0to1", "0to2", "1to2"]): idx0 = indices[0] m_data = data[idx0] if idx0 in data else get_twoview(data, idx0) # stack on dim=0 for idx in indices[1:]: data_i = data[idx] if idx in data else get_twoview(data, idx) for k, v in data_i.items(): m_data[k] = torch.cat([m_data[k], v], dim=0) return m_data def unstack_twoviews(data, B, indices=["0to1", "0to2", "1to2"]): out = {} for i, idx in enumerate(indices): out[idx] = {k: v[i * B : (i + 1) * B] for k, v in data.items()} return out