Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,841 Bytes
0a639cb 165abce 0a639cb 165abce 0a639cb 165abce 0a639cb 165abce 0a639cb 165abce 0a639cb 165abce 0a639cb 165abce 0a639cb 165abce 0a639cb 165abce 0a639cb 165abce 0a639cb 165abce 0a639cb 165abce 0a639cb 165abce 0a639cb 165abce 0a639cb 165abce 0a639cb 165abce 0a639cb 165abce 0a639cb 165abce 0a639cb 165abce 0a639cb 165abce 0a639cb 165abce 3fd1314 165abce 0a639cb 165abce 0a639cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
import os
import torch
import numpy as np
import time
import matplotlib.pyplot as plt
from typing import Tuple, List
from statistics import mean, median, stdev
from lib import (
normalize_text,
chunk_text,
count_tokens,
load_module_from_file,
download_model_files,
list_voice_files,
download_voice_files,
ensure_dir,
concatenate_audio_chunks
)
class TTSModel:
"""GPU-accelerated TTS model manager"""
def __init__(self):
self.model = None
self.voices_dir = "voices"
self.model_repo = "hexgrad/Kokoro-82M"
ensure_dir(self.voices_dir)
# Load required modules
py_modules = ["istftnet", "plbert", "models", "kokoro"]
module_files = download_model_files(self.model_repo, [f"{m}.py" for m in py_modules])
for module_name, file_path in zip(py_modules, module_files):
load_module_from_file(module_name, file_path)
# Import required functions from kokoro module
kokoro = __import__("kokoro")
self.generate = kokoro.generate
self.build_model = __import__("models").build_model
def initialize(self) -> bool:
"""Initialize model and download voices"""
try:
print("Initializing model...")
# Download model files
model_files = download_model_files(
self.model_repo,
["kokoro-v0_19.pth", "config.json"]
)
model_path = model_files[0] # kokoro-v0_19.pth
# Build model directly on GPU
with torch.cuda.device(0):
torch.cuda.set_device(0)
self.model = self.build_model(model_path, 'cuda')
self._model_on_gpu = True
print("Model initialization complete")
return True
except Exception as e:
print(f"Error initializing model: {str(e)}")
return False
def ensure_voice_downloaded(self, voice_name: str) -> bool:
"""Ensure specific voice is downloaded"""
try:
voice_path = os.path.join(self.voices_dir, f"{voice_name}.pt")
if not os.path.exists(voice_path):
print(f"Downloading voice {voice_name}.pt...")
download_voice_files(self.model_repo, [f"{voice_name}.pt"], self.voices_dir)
return True
except Exception as e:
print(f"Error downloading voice {voice_name}: {str(e)}")
return False
def list_voices(self) -> List[str]:
"""List available voices"""
return [
"af_bella", "af_nicole", "af_sarah", "af_sky", "af",
"am_adam", "am_michael", "bf_emma", "bf_isabella",
"bm_george", "bm_lewis"
]
def _ensure_model_on_gpu(self) -> None:
"""Ensure model is on GPU and stays there"""
if not hasattr(self, '_model_on_gpu') or not self._model_on_gpu:
print("Moving model to GPU...")
with torch.cuda.device(0):
torch.cuda.set_device(0)
if hasattr(self.model, 'to'):
self.model.to('cuda')
else:
for name in self.model:
if isinstance(self.model[name], torch.Tensor):
self.model[name] = self.model[name].cuda()
self._model_on_gpu = True
def _generate_audio(self, text: str, voicepack: torch.Tensor, lang: str, speed: float) -> np.ndarray:
"""GPU-accelerated audio generation"""
try:
with torch.cuda.device(0):
torch.cuda.set_device(0)
# Move everything to GPU in a single context
if not hasattr(self, '_model_on_gpu') or not self._model_on_gpu:
print("Moving model to GPU...")
if hasattr(self.model, 'to'):
self.model.to('cuda')
else:
for name in self.model:
if isinstance(self.model[name], torch.Tensor):
self.model[name] = self.model[name].cuda()
self._model_on_gpu = True
# Move voicepack to GPU
voicepack = voicepack.cuda()
# Run generation with everything on GPU
audio, _ = self.generate(
self.model,
text,
voicepack,
lang=lang,
speed=speed
)
return audio
except Exception as e:
print(f"Error in audio generation: {str(e)}")
raise e
def generate_speech(self, text: str, voice_name: str, speed: float = 1.0, progress_callback=None) -> Tuple[np.ndarray, float]:
"""Generate speech from text. Returns (audio_array, duration)
Args:
text: Input text to convert to speech
voice_name: Name of voice to use
speed: Speech speed multiplier
progress_callback: Optional callback function(chunk_num, total_chunks, tokens_per_sec, rtf)
"""
try:
if not text or not voice_name:
raise ValueError("Text and voice name are required")
start_time = time.time()
# Count tokens and normalize text
total_tokens = count_tokens(text)
text = normalize_text(text)
if not text:
raise ValueError("Text is empty after normalization")
# Load voice and process within GPU context
with torch.cuda.device(0):
torch.cuda.set_device(0)
voice_path = os.path.join(self.voices_dir, f"{voice_name}.pt")
# Ensure voice is downloaded and load directly to GPU
if not self.ensure_voice_downloaded(voice_name):
raise ValueError(f"Failed to download voice: {voice_name}")
voicepack = torch.load(voice_path, map_location='cuda', weights_only=True)
# Break text into chunks for better memory management
chunks = chunk_text(text)
print(f"Processing {len(chunks)} chunks...")
# Ensure model is initialized and on GPU
if self.model is None:
print("Model not initialized, reinitializing...")
if not self.initialize():
raise ValueError("Failed to initialize model")
# Move model to GPU if needed
if not hasattr(self, '_model_on_gpu') or not self._model_on_gpu:
print("Moving model to GPU...")
if hasattr(self.model, 'to'):
self.model.to('cuda')
else:
for name in self.model:
if isinstance(self.model[name], torch.Tensor):
self.model[name] = self.model[name].cuda()
self._model_on_gpu = True
# Process all chunks within same GPU context
audio_chunks = []
chunk_times = []
chunk_sizes = [] # Store chunk lengths
total_processed_tokens = 0
total_processed_time = 0
for i, chunk in enumerate(chunks):
chunk_start = time.time()
chunk_audio = self._generate_audio(
text=chunk,
voicepack=voicepack,
lang=voice_name[0],
speed=speed
)
chunk_time = time.time() - chunk_start
# Update metrics
chunk_tokens = count_tokens(chunk)
total_processed_tokens += chunk_tokens
total_processed_time += chunk_time
current_tokens_per_sec = total_processed_tokens / total_processed_time
# Calculate processing speed metrics
chunk_duration = len(chunk_audio) / 24000 # audio duration in seconds
rtf = chunk_time / chunk_duration
times_faster = 1 / rtf
chunk_times.append(chunk_time)
chunk_sizes.append(len(chunk))
print(f"Chunk {i+1}/{len(chunks)} processed in {chunk_time:.2f}s")
print(f"Current tokens/sec: {current_tokens_per_sec:.2f}")
print(f"Real-time factor: {rtf:.2f}x")
print(f"{times_faster:.1f}x faster than real-time")
audio_chunks.append(chunk_audio)
# Call progress callback if provided
if progress_callback:
progress_callback(i + 1, len(chunks), current_tokens_per_sec, rtf)
# Concatenate audio chunks
audio = concatenate_audio_chunks(audio_chunks)
def setup_plot(fig, ax, title):
"""Configure plot styling"""
# Improve grid
ax.grid(True, linestyle="--", alpha=0.3, color="#ffffff")
# Set title and labels with better fonts and more padding
ax.set_title(title, pad=40, fontsize=16, fontweight="bold", color="#ffffff")
ax.set_xlabel(ax.get_xlabel(), fontsize=14, fontweight="medium", color="#ffffff")
ax.set_ylabel(ax.get_ylabel(), fontsize=14, fontweight="medium", color="#ffffff")
# Improve tick labels
ax.tick_params(labelsize=12, colors="#ffffff")
# Style spines
for spine in ax.spines.values():
spine.set_color("#ffffff")
spine.set_alpha(0.3)
spine.set_linewidth(0.5)
# Set background colors
ax.set_facecolor("#1a1a2e")
fig.patch.set_facecolor("#1a1a2e")
return fig, ax
# Set dark style
plt.style.use("dark_background")
# Create figure with subplots
fig = plt.figure(figsize=(18, 16))
fig.patch.set_facecolor("#1a1a2e")
# Create subplot grid
gs = plt.GridSpec(2, 1, left=0.15, right=0.85, top=0.9, bottom=0.15, hspace=0.4)
# Processing times plot
ax1 = plt.subplot(gs[0])
chunks_x = list(range(1, len(chunks) + 1))
bars = ax1.bar(chunks_x, chunk_times, color='#ff2a6d', alpha=0.8)
# Add statistics lines
mean_time = mean(chunk_times)
median_time = median(chunk_times)
std_time = stdev(chunk_times) if len(chunk_times) > 1 else 0
ax1.axhline(y=mean_time, color='#05d9e8', linestyle='--',
label=f'Mean: {mean_time:.2f}s')
ax1.axhline(y=median_time, color='#d1f7ff', linestyle=':',
label=f'Median: {median_time:.2f}s')
# Add ±1 std dev range
if len(chunk_times) > 1:
ax1.axhspan(mean_time - std_time, mean_time + std_time,
color='#8c1eff', alpha=0.2, label='±1 Std Dev')
# Add value labels on top of bars
for bar in bars:
height = bar.get_height()
ax1.text(bar.get_x() + bar.get_width() / 2.0,
height,
f'{height:.2f}s',
ha='center',
va='bottom',
color='white',
fontsize=10)
ax1.set_xlabel('Chunk Number')
ax1.set_ylabel('Processing Time (seconds)')
setup_plot(fig, ax1, 'Chunk Processing Times')
ax1.legend(facecolor="#1a1a2e", edgecolor="#ffffff")
# Chunk sizes plot
ax2 = plt.subplot(gs[1])
ax2.plot(chunks_x, chunk_sizes, color='#ff9e00', marker='o', linewidth=2)
ax2.set_xlabel('Chunk Number')
ax2.set_ylabel('Chunk Size (chars)')
setup_plot(fig, ax2, 'Chunk Sizes')
# Save plot
plt.savefig('chunk_times.png', format='png')
plt.close()
# Calculate metrics
total_time = time.time() - start_time
tokens_per_second = total_tokens / total_time
print(f"\nProcessing Metrics:")
print(f"Total tokens: {total_tokens}")
print(f"Total time: {total_time:.2f}s")
print(f"Tokens per second: {tokens_per_second:.2f}")
print(f"Mean chunk time: {mean_time:.2f}s")
print(f"Median chunk time: {median_time:.2f}s")
if len(chunk_times) > 1:
print(f"Std dev: {std_time:.2f}s")
print(f"\nChunk time plot saved as 'chunk_times.png'")
return audio, len(audio) / 24000 # Return audio array and duration
except Exception as e:
print(f"Error generating speech: {str(e)}")
raise
|