Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import gradio as gr | |
import time | |
import math | |
import logging | |
import matplotlib.pyplot as plt | |
import numpy as np | |
# from lib.mock_tts import MockTTSModel | |
from lib import format_audio_output | |
from lib.ui_content import header_html, demo_text_info | |
from lib.book_utils import get_available_books, get_book_info, get_chapter_text | |
from lib.text_utils import count_tokens | |
from tts_model import TTSModel | |
# Set HF_HOME for faster restarts with cached models/voices | |
os.environ["HF_HOME"] = "/data/.huggingface" | |
# Create TTS model instance | |
model = TTSModel() | |
# Configure logging | |
logging.basicConfig(level=logging.DEBUG) | |
# Suppress matplotlib debug messages | |
logging.getLogger('matplotlib').setLevel(logging.WARNING) | |
logger = logging.getLogger(__name__) | |
logger.debug("Starting app initialization...") | |
model = TTSModel() | |
def initialize_model(): | |
"""Initialize model and get voices""" | |
if model.model is None: | |
if not model.initialize(): | |
raise gr.Error("Failed to initialize model") | |
voices = model.list_voices() | |
if not voices: | |
raise gr.Error("No voices found. Please check the voices directory.") | |
default_voice = 'af_sky' if 'af_sky' in voices else voices[0] if voices else None | |
return gr.update(choices=voices, value=default_voice) | |
def update_progress(chunk_num, total_chunks, tokens_per_sec, rtf, progress_state, start_time, gpu_timeout, progress): | |
# Calculate time metrics | |
elapsed = time.time() - start_time | |
gpu_time_left = max(0, gpu_timeout - elapsed) | |
# Calculate chunk time more accurately | |
prev_total_time = sum(progress_state["chunk_times"]) if progress_state["chunk_times"] else 0 | |
chunk_time = elapsed - prev_total_time | |
# Validate metrics before adding to state | |
if chunk_time > 0 and tokens_per_sec >= 0: | |
# Update progress state with validated metrics | |
progress_state["progress"] = chunk_num / total_chunks | |
progress_state["total_chunks"] = total_chunks | |
progress_state["gpu_time_left"] = gpu_time_left | |
progress_state["tokens_per_sec"].append(float(tokens_per_sec)) | |
progress_state["rtf"].append(float(rtf)) | |
progress_state["chunk_times"].append(chunk_time) | |
# Only update progress display during processing | |
progress(progress_state["progress"], desc=f"Processing chunk {chunk_num}/{total_chunks} | GPU Time Left: {int(gpu_time_left)}s") | |
def generate_speech_from_ui(text, voice_names, speed, gpu_timeout, progress=gr.Progress(track_tqdm=False)): | |
"""Handle text-to-speech generation from the Gradio UI""" | |
try: | |
if not text or not voice_names: | |
raise gr.Error("Please enter text and select at least one voice") | |
start_time = time.time() | |
# Create progress state with explicit type initialization | |
progress_state = { | |
"progress": 0.0, | |
"tokens_per_sec": [], # Initialize as empty list | |
"rtf": [], # Initialize as empty list | |
"chunk_times": [], # Initialize as empty list | |
"gpu_time_left": float(gpu_timeout), # Ensure float | |
"total_chunks": 0 | |
} | |
# Handle single or multiple voices | |
if isinstance(voice_names, str): | |
voice_names = [voice_names] | |
# Generate speech with progress tracking using combined voice | |
audio_array, duration, metrics = model.generate_speech( | |
text, | |
voice_names, | |
speed, | |
gpu_timeout=gpu_timeout, | |
progress_callback=update_progress, | |
progress_state=progress_state, | |
progress=progress | |
) | |
# Format output for Gradio | |
audio_output, duration_text = format_audio_output(audio_array) | |
# Create plot and metrics text outside GPU context | |
fig, metrics_text = create_performance_plot(metrics, voice_names) | |
return ( | |
audio_output, | |
fig, | |
metrics_text | |
) | |
except Exception as e: | |
raise gr.Error(f"Generation failed: {str(e)}") | |
def create_performance_plot(metrics, voice_names): | |
"""Create performance plot and metrics text from generation metrics""" | |
# Clean and process the data | |
tokens_per_sec = np.array(metrics["tokens_per_sec"]) | |
rtf_values = np.array(metrics["rtf"]) | |
# Calculate statistics using cleaned data | |
median_tps = float(np.median(tokens_per_sec)) | |
mean_tps = float(np.mean(tokens_per_sec)) | |
std_tps = float(np.std(tokens_per_sec)) | |
# Set y-axis limits based on data range | |
y_min = max(0, np.min(tokens_per_sec) * 0.9) | |
y_max = np.max(tokens_per_sec) * 1.1 | |
# Create plot | |
fig, ax = plt.subplots(figsize=(10, 5)) | |
fig.patch.set_facecolor('black') | |
ax.set_facecolor('black') | |
# Plot data points | |
chunk_nums = list(range(1, len(tokens_per_sec) + 1)) | |
# Plot data points | |
ax.bar(chunk_nums, tokens_per_sec, color='#ff2a6d', alpha=0.6) | |
# Set y-axis limits with padding | |
padding = 0.1 * (y_max - y_min) | |
ax.set_ylim(max(0, y_min - padding), y_max + padding) | |
# Add median line | |
ax.axhline(y=median_tps, color='#05d9e8', linestyle='--', | |
label=f'Median: {median_tps:.1f} tokens/sec') | |
# Style improvements | |
ax.set_xlabel('Chunk Number', fontsize=24, labelpad=20, color='white') | |
ax.set_ylabel('Tokens per Second', fontsize=24, labelpad=20, color='white') | |
ax.set_title('Processing Speed by Chunk', fontsize=28, pad=30, color='white') | |
ax.tick_params(axis='both', which='major', labelsize=20, colors='white') | |
ax.spines['bottom'].set_color('white') | |
ax.spines['top'].set_color('white') | |
ax.spines['left'].set_color('white') | |
ax.spines['right'].set_color('white') | |
ax.grid(False) | |
ax.legend(fontsize=20, facecolor='black', edgecolor='#05d9e8', loc='lower left', | |
labelcolor='white') | |
plt.tight_layout() | |
# Calculate average RTF from individual chunk RTFs | |
rtf = np.mean(rtf_values) | |
# Prepare metrics text | |
metrics_text = ( | |
f"Median Speed: {median_tps:.1f} tokens/sec (o200k_base)\n" + | |
f"Real-time Factor: {rtf:.3f}\n" + | |
f"Real Time Speed: {int(1/rtf)}x\n" + | |
f"Processing Time: {int(metrics['total_time'])}s\n" + | |
f"Total Tokens: {metrics['total_tokens']} (o200k_base)\n" + | |
f"Voices: {', '.join(voice_names)}" | |
) | |
return fig, metrics_text | |
# Create Gradio interface | |
with gr.Blocks(title="Kokoro TTS Demo", css=""" | |
.equal-height { | |
min-height: 400px; | |
display: flex; | |
flex-direction: column; | |
} | |
.token-label { | |
font-size: 1rem; | |
margin-bottom: 0.3rem; | |
text-align: center; | |
padding: 0.2rem 0; | |
} | |
.token-count { | |
color: #4169e1; | |
} | |
""") as demo: | |
gr.HTML(header_html) | |
with gr.Row(): | |
# Column 1: Text Input and Book Selection | |
with gr.Column(elem_classes="equal-height"): | |
# Book selection | |
books = get_available_books() | |
book_dropdown = gr.Dropdown( | |
label="Select Book", | |
choices=[book['label'] for book in books], | |
value=books[0]['label'] if books else None, | |
type="value", | |
allow_custom_value=True | |
) | |
# Initialize chapters for first book | |
initial_book = books[0]['value'] if books else None | |
initial_chapters = [] | |
if initial_book: | |
book_path = os.path.join("texts/processed", initial_book) | |
_, chapters = get_book_info(book_path) | |
initial_chapters = [ch['title'] for ch in chapters] | |
# Chapter selection with initial chapters | |
chapter_dropdown = gr.Dropdown( | |
label="Select Chapter", | |
choices=initial_chapters, | |
value=initial_chapters[0] if initial_chapters else None, | |
type="value", | |
allow_custom_value=True | |
) | |
lab_tps = 175 | |
lab_rts = 50 | |
# Text input area with initial chapter text | |
initial_text = "" | |
if initial_chapters and initial_book: | |
book_path = os.path.join("texts/processed", initial_book) | |
_, chapters = get_book_info(book_path) | |
if chapters: | |
initial_text = get_chapter_text(book_path, chapters[0]['id']) | |
tokens = count_tokens(initial_text) | |
time_estimate = math.ceil(tokens / lab_tps) | |
output_estimate = (time_estimate * lab_rts)//60 | |
initial_label = f'<div class="token-label"><span class="token-count">Estimated {output_estimate} minutes in ~{time_estimate}s</span></div>' | |
else: | |
initial_label = '<div class="token-label"></div>' | |
else: | |
initial_label = '<div class="token-label"></div>' | |
def update_text_label(text): | |
if not text: | |
return '<div class="token-label"></div>' | |
tokens = count_tokens(text) | |
time_estimate = math.ceil(tokens / lab_tps) | |
output_estimate = (time_estimate * lab_rts)//60 | |
return f'<div class="token-label"><span class="token-count">Estimated {output_estimate} minutes in ~{time_estimate}s</span></div>' | |
text_input = gr.TextArea( | |
label=None, | |
placeholder="Enter text here, select a chapter, or upload a .txt file", | |
value=initial_text, | |
lines=8, | |
max_lines=14, | |
show_label=False, | |
show_copy_button=True # Add copy button for convenience | |
) | |
clear_btn = gr.Button("Clear Text", variant="secondary") | |
label_html = gr.HTML(initial_label) | |
def clear_text(): | |
return "", '<div class="token-label"></div>' | |
clear_btn.click( | |
fn=clear_text, | |
outputs=[text_input, label_html] | |
) | |
# Update label whenever text changes | |
text_input.change( | |
fn=update_text_label, | |
inputs=[text_input], | |
outputs=[label_html], | |
trigger_mode="always_last" | |
) | |
def update_chapters(book_name): | |
if not book_name: | |
return gr.update(choices=[], value=None), "", '<div class="token-label"></div>' | |
# Find the corresponding book file | |
book_file = next((book['value'] for book in books if book['label'] == book_name), None) | |
if not book_file: | |
return gr.update(choices=[], value=None), "", '<div class="token-label"></div>' | |
book_path = os.path.join("texts/processed", book_file) | |
book_title, chapters = get_book_info(book_path) | |
# Create simple choices list of chapter titles | |
chapter_choices = [ch['title'] for ch in chapters] | |
# Set initial chapter text when book is selected | |
initial_text = get_chapter_text(book_path, chapters[0]['id']) if chapters else "" | |
if initial_text: | |
tokens = count_tokens(initial_text) | |
time_estimate = math.ceil(tokens / 150 / 10) * 10 | |
label = f'<div class="token-label"><span class="token-count">({tokens} tokens, ~{time_estimate}s generation time)</span></div>' | |
else: | |
label = '<div class="token-label"></div>' | |
return gr.update(choices=chapter_choices, value=chapter_choices[0] if chapter_choices else None), initial_text, label | |
def load_chapter_text(book_name, chapter_title): | |
if not book_name or not chapter_title: | |
return "", '<div class="token-label"></div>' | |
# Find the corresponding book file | |
book_file = next((book['value'] for book in books if book['label'] == book_name), None) | |
if not book_file: | |
return "", '<div class="token-label"></div>' | |
book_path = os.path.join("texts/processed", book_file) | |
# Get all chapters and find the one matching the title | |
_, chapters = get_book_info(book_path) | |
for ch in chapters: | |
if ch['title'] == chapter_title: | |
text = get_chapter_text(book_path, ch['id']) | |
tokens = count_tokens(text) | |
time_estimate = math.ceil(tokens / 150 / 10) * 10 | |
return text, f'<div class="token-label"> <span class="token-count">({tokens} tokens, ~{time_estimate}s generation time)</span></div>' | |
return "", '<div class="token-label"></div>' | |
# Set up event handlers for book/chapter selection | |
book_dropdown.change( | |
fn=update_chapters, | |
inputs=[book_dropdown], | |
outputs=[chapter_dropdown, text_input, label_html] | |
) | |
chapter_dropdown.change( | |
fn=load_chapter_text, | |
inputs=[book_dropdown, chapter_dropdown], | |
outputs=[text_input, label_html] | |
) | |
# Column 2: Controls | |
with gr.Column(elem_classes="equal-height"): | |
file_input = gr.File( | |
label="Upload .txt file", | |
file_types=[".txt"], | |
type="binary" | |
) | |
def load_text_from_file(file_bytes): | |
if file_bytes is None: | |
return None, '<div class="token-label"></div>' | |
try: | |
text = file_bytes.decode('utf-8') | |
tokens = count_tokens(text) | |
time_estimate = math.ceil(tokens / 150 / 10) * 10 # Round up to nearest 10 seconds | |
return text, f'<div class="token-label"><span class="token-count">({tokens} tokens, ~{time_estimate}s generation time)</span></div>' | |
except Exception as e: | |
raise gr.Error(f"Failed to read file: {str(e)}") | |
file_input.change( | |
fn=load_text_from_file, | |
inputs=[file_input], | |
outputs=[text_input, label_html] | |
) | |
with gr.Group(): | |
voice_dropdown = gr.Dropdown( | |
label="Voice(s)", | |
choices=[], # Start empty, will be populated after initialization | |
value=None, | |
allow_custom_value=True, | |
multiselect=True | |
) | |
# Add refresh button to manually update voice list | |
refresh_btn = gr.Button("🔄 Refresh Voices", size="sm") | |
speed_slider = gr.Slider( | |
label="Speed", | |
minimum=0.5, | |
maximum=2.0, | |
value=1.0, | |
step=0.1 | |
) | |
gpu_timeout_slider = gr.Slider( | |
label="GPU Timeout (seconds)", | |
minimum=15, | |
maximum=120, | |
value=90, | |
step=1, | |
info="Maximum time allowed for GPU processing" | |
) | |
submit_btn = gr.Button("Generate Speech", variant="primary") | |
# Column 3: Output | |
with gr.Column(elem_classes="equal-height"): | |
audio_output = gr.Audio( | |
label="Generated Speech", | |
type="numpy", | |
format="wav", | |
autoplay=False | |
) | |
progress_bar = gr.Progress(track_tqdm=False) | |
metrics_text = gr.Textbox( | |
label="Performance Summary", | |
interactive=False, | |
lines=5 | |
) | |
metrics_plot = gr.Plot( | |
label="Processing Metrics", | |
show_label=True, | |
format="png" # Explicitly set format to PNG which is supported by matplotlib | |
) | |
# Set up event handlers | |
refresh_btn.click( | |
fn=initialize_model, | |
outputs=[voice_dropdown] | |
) | |
submit_btn.click( | |
fn=generate_speech_from_ui, | |
inputs=[text_input, voice_dropdown, speed_slider, gpu_timeout_slider], | |
outputs=[audio_output, metrics_plot, metrics_text], | |
show_progress=True | |
) | |
# Add text analysis info | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(demo_text_info) | |
# Initialize voices on load | |
demo.load( | |
fn=initialize_model, | |
outputs=[voice_dropdown] | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
demo.launch() | |