Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import gradio as gr | |
import spaces | |
import time | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from tts_model import TTSModel | |
from lib import format_audio_output | |
# Set HF_HOME for faster restarts with cached models/voices | |
os.environ["HF_HOME"] = "/data/.huggingface" | |
# Create TTS model instance | |
model = TTSModel() | |
# Quick initialization | |
def initialize_model(): | |
"""Initialize model and get voices""" | |
if model.model is None: | |
if not model.initialize(): | |
raise gr.Error("Failed to initialize model") | |
return model.list_voices() | |
# Get initial voice list | |
voice_list = initialize_model() | |
# Allow 5 minutes for processing | |
def generate_speech_from_ui(text, voice_name, speed, progress=gr.Progress(track_tqdm=False)): | |
"""Handle text-to-speech generation from the Gradio UI""" | |
try: | |
start_time = time.time() | |
gpu_timeout = 120 # seconds | |
# Create progress state | |
progress_state = { | |
"progress": 0.0, | |
"tokens_per_sec": [], | |
"rtf": [], | |
"chunk_times": [], | |
"gpu_time_left": gpu_timeout, | |
"total_chunks": 0 | |
} | |
def update_progress(chunk_num, total_chunks, tokens_per_sec, rtf): | |
progress_state["progress"] = chunk_num / total_chunks | |
progress_state["tokens_per_sec"].append(tokens_per_sec) | |
progress_state["rtf"].append(rtf) | |
# Update GPU time remaining | |
elapsed = time.time() - start_time | |
gpu_time_left = max(0, gpu_timeout - elapsed) | |
progress_state["gpu_time_left"] = gpu_time_left | |
progress_state["total_chunks"] = total_chunks | |
# Track individual chunk processing time | |
chunk_time = elapsed - (sum(progress_state["chunk_times"]) if progress_state["chunk_times"] else 0) | |
progress_state["chunk_times"].append(chunk_time) | |
# Only update progress display during processing | |
progress(progress_state["progress"], desc=f"Processing chunk {chunk_num}/{total_chunks} | GPU Time Left: {int(gpu_time_left)}s") | |
# Generate speech with progress tracking | |
audio_array, duration = model.generate_speech( | |
text, | |
voice_name, | |
speed, | |
progress_callback=update_progress | |
) | |
# Format output for Gradio | |
audio_output, duration_text = format_audio_output(audio_array) | |
# Calculate final metrics | |
total_time = time.time() - start_time | |
total_duration = len(audio_array) / 24000 # audio duration in seconds | |
rtf = total_time / total_duration if total_duration > 0 else 0 | |
mean_tokens_per_sec = np.mean(progress_state["tokens_per_sec"]) | |
# Create plot of tokens per second with median line | |
fig, ax = plt.subplots(figsize=(10, 5)) | |
fig.patch.set_facecolor('black') | |
ax.set_facecolor('black') | |
chunk_nums = list(range(1, len(progress_state["tokens_per_sec"]) + 1)) | |
# Plot bars for tokens per second | |
ax.bar(chunk_nums, progress_state["tokens_per_sec"], color='#ff2a6d', alpha=0.8) | |
# Add median line | |
median_tps = np.median(progress_state["tokens_per_sec"]) | |
ax.axhline(y=median_tps, color='#05d9e8', linestyle='--', label=f'Median: {median_tps:.1f} tokens/sec') | |
# Style improvements | |
ax.set_xlabel('Chunk Number', fontsize=24, labelpad=20) | |
ax.set_ylabel('Tokens per Second', fontsize=24, labelpad=20) | |
ax.set_title('Processing Speed by Chunk', fontsize=28, pad=30) | |
# Increase tick label size | |
ax.tick_params(axis='both', which='major', labelsize=20) | |
# Remove gridlines | |
ax.grid(False) | |
# Style legend and position it in bottom left | |
ax.legend(fontsize=20, facecolor='black', edgecolor='#05d9e8', loc='lower left') | |
plt.tight_layout() | |
# Prepare final metrics display including audio duration and real-time speed | |
metrics_text = ( | |
f"Median Processing Speed: {np.median(progress_state['tokens_per_sec']):.1f} tokens/sec\n" + | |
f"Real-time Factor: {rtf:.3f}\n" + | |
f"Real Time Generation Speed: {int(1/rtf)}x \n" + | |
f"Processing Time: {int(total_time)}s\n" + | |
f"Output Audio Duration: {total_duration:.2f}s" | |
) | |
return ( | |
audio_output, | |
fig, | |
metrics_text | |
) | |
except Exception as e: | |
raise gr.Error(f"Generation failed: {str(e)}") | |
# Create Gradio interface | |
with gr.Blocks(title="Kokoro TTS Demo") as demo: | |
gr.HTML( | |
""" | |
<div style="display: flex; justify-content: flex-end; padding: 5px; gap: 5px;"> | |
<a class="github-button" href="https://github.com/remsky/Kokoro-FastAPI" data-color-scheme="no-preference: light; light: light; dark: dark;" data-size="large" data-show-count="true" aria-label="Star remsky/Kokoro-FastAPI on GitHub">Kokoro-FastAPI Repo</a> | |
<a href="https://huggingface.co/hexgrad/Kokoro-82M" target="_blank"> | |
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/model-on-hf-lg-dark.svg" alt="Model on HF"> | |
</a> | |
</div> | |
<div style="text-align: center; max-width: 800px; margin: 0 auto;"> | |
<h1>Kokoro TTS Demo</h1> | |
<p>Convert text to natural-sounding speech using various voices.</p> | |
</div> | |
<script async defer src="https://buttons.github.io/buttons.js"></script> | |
""" | |
) | |
with gr.Row(): | |
# Column 1: Text Input | |
with gr.Column(): | |
text_input = gr.TextArea( | |
label="Text to speak", | |
placeholder="Enter text here or upload a .txt file", | |
lines=10, | |
value=open("the_time_machine_hgwells.txt").read()[:1000] | |
) | |
# Column 2: Controls | |
with gr.Column(): | |
file_input = gr.File( | |
label="Upload .txt file", | |
file_types=[".txt"], | |
type="binary" | |
) | |
def load_text_from_file(file_bytes): | |
if file_bytes is None: | |
return None | |
try: | |
return file_bytes.decode('utf-8') | |
except Exception as e: | |
raise gr.Error(f"Failed to read file: {str(e)}") | |
file_input.change( | |
fn=load_text_from_file, | |
inputs=[file_input], | |
outputs=[text_input] | |
) | |
with gr.Group(): | |
voice_dropdown = gr.Dropdown( | |
label="Voice", | |
choices=voice_list, | |
value=voice_list[0] if voice_list else None, | |
allow_custom_value=True | |
) | |
speed_slider = gr.Slider( | |
label="Speed", | |
minimum=0.5, | |
maximum=2.0, | |
value=1.0, | |
step=0.1 | |
) | |
submit_btn = gr.Button("Generate Speech", variant="primary") | |
# Column 3: Output | |
with gr.Column(): | |
audio_output = gr.Audio( | |
label="Generated Speech", | |
type="numpy", | |
format="wav", | |
autoplay=False | |
) | |
progress_bar = gr.Progress(track_tqdm=False) | |
metrics_text = gr.Textbox( | |
label="Performance Summary", | |
interactive=False, | |
lines=4 | |
) | |
metrics_plot = gr.Plot( | |
label="Processing Metrics", | |
show_label=True, | |
format="png" # Explicitly set format to PNG which is supported by matplotlib | |
) | |
# Set up event handler | |
submit_btn.click( | |
fn=generate_speech_from_ui, | |
inputs=[text_input, voice_dropdown, speed_slider], | |
outputs=[audio_output, metrics_plot, metrics_text], | |
show_progress=True | |
) | |
# Add text analysis info | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(""" | |
### Demo Text Info | |
The demo text is loaded from H.G. Wells' "The Time Machine". This classic text demonstrates the system's ability to handle long-form content through chunking. | |
""") | |
# Launch the app | |
if __name__ == "__main__": | |
demo.launch() | |