styletts2_Japanese / train_first.py
mrfakename's picture
Initial Commit
635f007
import os
import os.path as osp
import re
import sys
import yaml
import shutil
import numpy as np
import torch
import click
import warnings
warnings.simplefilter("ignore")
# load packages
import random
import yaml
from munch import Munch
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torchaudio
import librosa
from models import *
from meldataset import build_dataloader
from utils import *
from losses import *
from optimizers import build_optimizer
import time
from accelerate import Accelerator
from accelerate.utils import LoggerType
from accelerate import DistributedDataParallelKwargs
from torch.utils.tensorboard import SummaryWriter
import logging
from accelerate.logging import get_logger
logger = get_logger(__name__, log_level="DEBUG")
@click.command()
@click.option("-p", "--config_path", default="Configs/config.yml", type=str)
def main(config_path):
config = yaml.safe_load(open(config_path))
log_dir = config["log_dir"]
if not osp.exists(log_dir):
os.makedirs(log_dir, exist_ok=True)
shutil.copy(config_path, osp.join(log_dir, osp.basename(config_path)))
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(
project_dir=log_dir, split_batches=True, kwargs_handlers=[ddp_kwargs]
)
if accelerator.is_main_process:
writer = SummaryWriter(log_dir + "/tensorboard")
# write logs
file_handler = logging.FileHandler(osp.join(log_dir, "train.log"))
file_handler.setLevel(logging.DEBUG)
file_handler.setFormatter(
logging.Formatter("%(levelname)s:%(asctime)s: %(message)s")
)
logger.logger.addHandler(file_handler)
batch_size = config.get("batch_size", 10)
device = accelerator.device
epochs = config.get("epochs_1st", 200)
save_freq = config.get("save_freq", 2)
log_interval = config.get("log_interval", 10)
saving_epoch = config.get("save_freq", 2)
data_params = config.get("data_params", None)
sr = config["preprocess_params"].get("sr", 24000)
train_path = data_params["train_data"]
val_path = data_params["val_data"]
root_path = data_params["root_path"]
min_length = data_params["min_length"]
OOD_data = data_params["OOD_data"]
max_len = config.get("max_len", 200)
# load data
train_list, val_list = get_data_path_list(train_path, val_path)
train_dataloader = build_dataloader(
train_list,
root_path,
OOD_data=OOD_data,
min_length=min_length,
batch_size=batch_size,
num_workers=2,
dataset_config={},
device=device,
)
val_dataloader = build_dataloader(
val_list,
root_path,
OOD_data=OOD_data,
min_length=min_length,
batch_size=batch_size,
validation=True,
num_workers=0,
device=device,
dataset_config={},
)
with accelerator.main_process_first():
# load pretrained ASR model
ASR_config = config.get("ASR_config", False)
ASR_path = config.get("ASR_path", False)
text_aligner = load_ASR_models(ASR_path, ASR_config)
# load pretrained F0 model
F0_path = config.get("F0_path", False)
pitch_extractor = load_F0_models(F0_path)
# load BERT model
from Utils.PLBERT.util import load_plbert
BERT_path = config.get("PLBERT_dir", False)
plbert = load_plbert(BERT_path)
scheduler_params = {
"max_lr": float(config["optimizer_params"].get("lr", 1e-4)),
"pct_start": float(config["optimizer_params"].get("pct_start", 0.0)),
"epochs": epochs,
"steps_per_epoch": len(train_dataloader),
}
model_params = recursive_munch(config["model_params"])
multispeaker = model_params.multispeaker
model = build_model(model_params, text_aligner, pitch_extractor, plbert)
best_loss = float("inf") # best test loss
loss_train_record = list([])
loss_test_record = list([])
loss_params = Munch(config["loss_params"])
TMA_epoch = loss_params.TMA_epoch
for k in model:
model[k] = accelerator.prepare(model[k])
train_dataloader, val_dataloader = accelerator.prepare(
train_dataloader, val_dataloader
)
_ = [model[key].to(device) for key in model]
# initialize optimizers after preparing models for compatibility with FSDP
optimizer = build_optimizer(
{key: model[key].parameters() for key in model},
scheduler_params_dict={key: scheduler_params.copy() for key in model},
lr=float(config["optimizer_params"].get("lr", 1e-4)),
)
for k, v in optimizer.optimizers.items():
optimizer.optimizers[k] = accelerator.prepare(optimizer.optimizers[k])
optimizer.schedulers[k] = accelerator.prepare(optimizer.schedulers[k])
with accelerator.main_process_first():
if config.get("pretrained_model", "") != "":
model, optimizer, start_epoch, iters = load_checkpoint(
model,
optimizer,
config["pretrained_model"],
load_only_params=config.get("load_only_params", True),
)
else:
start_epoch = 0
iters = 0
# in case not distributed
try:
n_down = model.text_aligner.module.n_down
except:
n_down = model.text_aligner.n_down
# wrapped losses for compatibility with mixed precision
stft_loss = MultiResolutionSTFTLoss().to(device)
gl = GeneratorLoss(model.mpd, model.msd).to(device)
dl = DiscriminatorLoss(model.mpd, model.msd).to(device)
wl = WavLMLoss(model_params.slm.model, model.wd, sr, model_params.slm.sr).to(device)
for epoch in range(start_epoch, epochs):
running_loss = 0
start_time = time.time()
_ = [model[key].train() for key in model]
for i, batch in enumerate(train_dataloader):
waves = batch[0]
batch = [b.to(device) for b in batch[1:]]
texts, input_lengths, _, _, mels, mel_input_length, _ = batch
with torch.no_grad():
mask = length_to_mask(mel_input_length // (2**n_down)).to("cuda")
text_mask = length_to_mask(input_lengths).to(texts.device)
ppgs, s2s_pred, s2s_attn = model.text_aligner(mels, mask, texts)
s2s_attn = s2s_attn.transpose(-1, -2)
s2s_attn = s2s_attn[..., 1:]
s2s_attn = s2s_attn.transpose(-1, -2)
with torch.no_grad():
attn_mask = (
(~mask)
.unsqueeze(-1)
.expand(mask.shape[0], mask.shape[1], text_mask.shape[-1])
.float()
.transpose(-1, -2)
)
attn_mask = (
attn_mask.float()
* (~text_mask)
.unsqueeze(-1)
.expand(text_mask.shape[0], text_mask.shape[1], mask.shape[-1])
.float()
)
attn_mask = attn_mask < 1
s2s_attn.masked_fill_(attn_mask, 0.0)
with torch.no_grad():
mask_ST = mask_from_lens(
s2s_attn, input_lengths, mel_input_length // (2**n_down)
)
s2s_attn_mono = maximum_path(s2s_attn, mask_ST)
# encode
t_en = model.text_encoder(texts, input_lengths, text_mask)
# 50% of chance of using monotonic version
if bool(random.getrandbits(1)):
asr = t_en @ s2s_attn
else:
asr = t_en @ s2s_attn_mono
# get clips
mel_input_length_all = accelerator.gather(
mel_input_length
) # for balanced load
mel_len = min(
[int(mel_input_length_all.min().item() / 2 - 1), max_len // 2]
)
mel_len_st = int(mel_input_length.min().item() / 2 - 1)
en = []
gt = []
wav = []
st = []
for bib in range(len(mel_input_length)):
mel_length = int(mel_input_length[bib].item() / 2)
random_start = np.random.randint(0, mel_length - mel_len)
en.append(asr[bib, :, random_start : random_start + mel_len])
gt.append(
mels[bib, :, (random_start * 2) : ((random_start + mel_len) * 2)]
)
y = waves[bib][
(random_start * 2) * 300 : ((random_start + mel_len) * 2) * 300
]
wav.append(torch.from_numpy(y).to(device))
# style reference (better to be different from the GT)
random_start = np.random.randint(0, mel_length - mel_len_st)
st.append(
mels[bib, :, (random_start * 2) : ((random_start + mel_len_st) * 2)]
)
en = torch.stack(en)
gt = torch.stack(gt).detach()
st = torch.stack(st).detach()
wav = torch.stack(wav).float().detach()
# clip too short to be used by the style encoder
if gt.shape[-1] < 80:
continue
with torch.no_grad():
real_norm = log_norm(gt.unsqueeze(1)).squeeze(1).detach()
F0_real, _, _ = model.pitch_extractor(gt.unsqueeze(1))
s = model.style_encoder(
st.unsqueeze(1) if multispeaker else gt.unsqueeze(1)
)
y_rec = model.decoder(en, F0_real, real_norm, s)
# discriminator loss
if epoch >= TMA_epoch:
optimizer.zero_grad()
d_loss = dl(wav.detach().unsqueeze(1).float(), y_rec.detach()).mean()
accelerator.backward(d_loss)
optimizer.step("msd")
optimizer.step("mpd")
else:
d_loss = 0
# generator loss
optimizer.zero_grad()
loss_mel = stft_loss(y_rec.squeeze(), wav.detach())
if epoch >= TMA_epoch: # start TMA training
loss_s2s = 0
for _s2s_pred, _text_input, _text_length in zip(
s2s_pred, texts, input_lengths
):
loss_s2s += F.cross_entropy(
_s2s_pred[:_text_length], _text_input[:_text_length]
)
loss_s2s /= texts.size(0)
loss_mono = F.l1_loss(s2s_attn, s2s_attn_mono) * 10
loss_gen_all = gl(wav.detach().unsqueeze(1).float(), y_rec).mean()
loss_slm = wl(wav.detach(), y_rec).mean()
g_loss = (
loss_params.lambda_mel * loss_mel
+ loss_params.lambda_mono * loss_mono
+ loss_params.lambda_s2s * loss_s2s
+ loss_params.lambda_gen * loss_gen_all
+ loss_params.lambda_slm * loss_slm
)
else:
loss_s2s = 0
loss_mono = 0
loss_gen_all = 0
loss_slm = 0
g_loss = loss_mel
running_loss += accelerator.gather(loss_mel).mean().item()
accelerator.backward(g_loss)
optimizer.step("text_encoder")
optimizer.step("style_encoder")
optimizer.step("decoder")
if epoch >= TMA_epoch:
optimizer.step("text_aligner")
optimizer.step("pitch_extractor")
iters = iters + 1
if (i + 1) % log_interval == 0 and accelerator.is_main_process:
log_print(
"Epoch [%d/%d], Step [%d/%d], Mel Loss: %.5f, Gen Loss: %.5f, Disc Loss: %.5f, Mono Loss: %.5f, S2S Loss: %.5f, SLM Loss: %.5f"
% (
epoch + 1,
epochs,
i + 1,
len(train_list) // batch_size,
running_loss / log_interval,
loss_gen_all,
d_loss,
loss_mono,
loss_s2s,
loss_slm,
),
logger,
)
writer.add_scalar("train/mel_loss", running_loss / log_interval, iters)
writer.add_scalar("train/gen_loss", loss_gen_all, iters)
writer.add_scalar("train/d_loss", d_loss, iters)
writer.add_scalar("train/mono_loss", loss_mono, iters)
writer.add_scalar("train/s2s_loss", loss_s2s, iters)
writer.add_scalar("train/slm_loss", loss_slm, iters)
running_loss = 0
print("Time elasped:", time.time() - start_time)
loss_test = 0
_ = [model[key].eval() for key in model]
with torch.no_grad():
iters_test = 0
for batch_idx, batch in enumerate(val_dataloader):
optimizer.zero_grad()
waves = batch[0]
batch = [b.to(device) for b in batch[1:]]
texts, input_lengths, _, _, mels, mel_input_length, _ = batch
with torch.no_grad():
mask = length_to_mask(mel_input_length // (2**n_down)).to("cuda")
ppgs, s2s_pred, s2s_attn = model.text_aligner(mels, mask, texts)
s2s_attn = s2s_attn.transpose(-1, -2)
s2s_attn = s2s_attn[..., 1:]
s2s_attn = s2s_attn.transpose(-1, -2)
text_mask = length_to_mask(input_lengths).to(texts.device)
attn_mask = (
(~mask)
.unsqueeze(-1)
.expand(mask.shape[0], mask.shape[1], text_mask.shape[-1])
.float()
.transpose(-1, -2)
)
attn_mask = (
attn_mask.float()
* (~text_mask)
.unsqueeze(-1)
.expand(text_mask.shape[0], text_mask.shape[1], mask.shape[-1])
.float()
)
attn_mask = attn_mask < 1
s2s_attn.masked_fill_(attn_mask, 0.0)
# encode
t_en = model.text_encoder(texts, input_lengths, text_mask)
asr = t_en @ s2s_attn
# get clips
mel_input_length_all = accelerator.gather(
mel_input_length
) # for balanced load
mel_len = min(
[int(mel_input_length.min().item() / 2 - 1), max_len // 2]
)
en = []
gt = []
wav = []
for bib in range(len(mel_input_length)):
mel_length = int(mel_input_length[bib].item() / 2)
random_start = np.random.randint(0, mel_length - mel_len)
en.append(asr[bib, :, random_start : random_start + mel_len])
gt.append(
mels[
bib, :, (random_start * 2) : ((random_start + mel_len) * 2)
]
)
y = waves[bib][
(random_start * 2) * 300 : ((random_start + mel_len) * 2) * 300
]
wav.append(torch.from_numpy(y).to("cuda"))
wav = torch.stack(wav).float().detach()
en = torch.stack(en)
gt = torch.stack(gt).detach()
F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1))
s = model.style_encoder(gt.unsqueeze(1))
real_norm = log_norm(gt.unsqueeze(1)).squeeze(1)
y_rec = model.decoder(en, F0_real, real_norm, s)
loss_mel = stft_loss(y_rec.squeeze(), wav.detach())
loss_test += accelerator.gather(loss_mel).mean().item()
iters_test += 1
if accelerator.is_main_process:
print("Epochs:", epoch + 1)
log_print(
"Validation loss: %.3f" % (loss_test / iters_test) + "\n\n\n\n", logger
)
print("\n\n\n")
writer.add_scalar("eval/mel_loss", loss_test / iters_test, epoch + 1)
attn_image = get_image(s2s_attn[0].cpu().numpy().squeeze())
writer.add_figure("eval/attn", attn_image, epoch)
with torch.no_grad():
for bib in range(len(asr)):
mel_length = int(mel_input_length[bib].item())
gt = mels[bib, :, :mel_length].unsqueeze(0)
en = asr[bib, :, : mel_length // 2].unsqueeze(0)
F0_real, _, _ = model.pitch_extractor(gt.unsqueeze(1))
F0_real = F0_real.unsqueeze(0)
s = model.style_encoder(gt.unsqueeze(1))
real_norm = log_norm(gt.unsqueeze(1)).squeeze(1)
y_rec = model.decoder(en, F0_real, real_norm, s)
writer.add_audio(
"eval/y" + str(bib),
y_rec.cpu().numpy().squeeze(),
epoch,
sample_rate=sr,
)
if epoch == 0:
writer.add_audio(
"gt/y" + str(bib),
waves[bib].squeeze(),
epoch,
sample_rate=sr,
)
if bib >= 6:
break
if epoch % saving_epoch == 0:
if (loss_test / iters_test) < best_loss:
best_loss = loss_test / iters_test
print("Saving..")
state = {
"net": {key: model[key].state_dict() for key in model},
"optimizer": optimizer.state_dict(),
"iters": iters,
"val_loss": loss_test / iters_test,
"epoch": epoch,
}
save_path = osp.join(log_dir, "epoch_1st_%05d.pth" % epoch)
torch.save(state, save_path)
if accelerator.is_main_process:
print("Saving..")
state = {
"net": {key: model[key].state_dict() for key in model},
"optimizer": optimizer.state_dict(),
"iters": iters,
"val_loss": loss_test / iters_test,
"epoch": epoch,
}
save_path = osp.join(log_dir, config.get("first_stage_path", "first_stage.pth"))
torch.save(state, save_path)
if __name__ == "__main__":
main()