Rimyy commited on
Commit
e6c7920
1 Parent(s): c87e9c9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -3
app.py CHANGED
@@ -1,4 +1,4 @@
1
- import gradio as gr
2
  from transformers import AutoModelForCausalLM, AutoTokenizer
3
 
4
  # Charger le modèle et le tokenizer
@@ -6,10 +6,15 @@ model_name = "Rimyy/MISTRAL-finetuneGSMdata1exp"
6
  tokenizer = AutoTokenizer.from_pretrained(model_name)
7
  model = AutoModelForCausalLM.from_pretrained(model_name)
8
 
 
9
  def predict(prompt):
10
  inputs = tokenizer(prompt, return_tensors="pt")
11
  outputs = model.generate(inputs.input_ids, max_length=256)
12
  return tokenizer.decode(outputs[0], skip_special_tokens=True)
13
 
14
- interface = gr.Interface(fn=predict, inputs="text", outputs="text")
15
- interface.launch()
 
 
 
 
 
1
+ import streamlit as st
2
  from transformers import AutoModelForCausalLM, AutoTokenizer
3
 
4
  # Charger le modèle et le tokenizer
 
6
  tokenizer = AutoTokenizer.from_pretrained(model_name)
7
  model = AutoModelForCausalLM.from_pretrained(model_name)
8
 
9
+ # Fonction de prédiction
10
  def predict(prompt):
11
  inputs = tokenizer(prompt, return_tensors="pt")
12
  outputs = model.generate(inputs.input_ids, max_length=256)
13
  return tokenizer.decode(outputs[0], skip_special_tokens=True)
14
 
15
+ # Interface utilisateur Streamlit
16
+ st.title("Modèle de génération de texte")
17
+ prompt = st.text_area("Entrez votre texte:")
18
+ if st.button("Générer"):
19
+ result = predict(prompt)
20
+ st.text_area("Résultat", value=result, height=200)