Spaces:
Runtime error
Runtime error
first commit
Browse files- lib/autoencoder.py +1 -1
- lib/encoder.py +1 -1
- lib/utils.py +0 -117
lib/autoencoder.py
CHANGED
@@ -16,7 +16,7 @@ from contextlib import contextmanager
|
|
16 |
from lib.model import Encoder, Decoder
|
17 |
from lib.distributions import DiagonalGaussianDistribution
|
18 |
|
19 |
-
from
|
20 |
|
21 |
class AutoencoderKL(pl.LightningModule):
|
22 |
def __init__(self,
|
|
|
16 |
from lib.model import Encoder, Decoder
|
17 |
from lib.distributions import DiagonalGaussianDistribution
|
18 |
|
19 |
+
from utils import instantiate_from_config
|
20 |
|
21 |
class AutoencoderKL(pl.LightningModule):
|
22 |
def __init__(self,
|
lib/encoder.py
CHANGED
@@ -15,7 +15,7 @@ from torch.utils.checkpoint import checkpoint
|
|
15 |
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
|
16 |
|
17 |
import open_clip
|
18 |
-
from
|
19 |
|
20 |
|
21 |
class AbstractEncoder(nn.Module):
|
|
|
15 |
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
|
16 |
|
17 |
import open_clip
|
18 |
+
from utils import default, count_params
|
19 |
|
20 |
|
21 |
class AbstractEncoder(nn.Module):
|
lib/utils.py
DELETED
@@ -1,117 +0,0 @@
|
|
1 |
-
'''
|
2 |
-
* Copyright (c) 2023 Salesforce, Inc.
|
3 |
-
* All rights reserved.
|
4 |
-
* SPDX-License-Identifier: Apache License 2.0
|
5 |
-
* For full license text, see LICENSE.txt file in the repo root or http://www.apache.org/licenses/
|
6 |
-
* By Can Qin
|
7 |
-
* Modified from ControlNet repo: https://github.com/lllyasviel/ControlNet
|
8 |
-
* Copyright (c) 2023 Lvmin Zhang and Maneesh Agrawala
|
9 |
-
'''
|
10 |
-
|
11 |
-
import os
|
12 |
-
import torch
|
13 |
-
from omegaconf import OmegaConf
|
14 |
-
import importlib
|
15 |
-
import numpy as np
|
16 |
-
|
17 |
-
|
18 |
-
from inspect import isfunction
|
19 |
-
from PIL import Image, ImageDraw, ImageFont
|
20 |
-
|
21 |
-
|
22 |
-
def log_txt_as_img(wh, xc, size=10):
|
23 |
-
# wh a tuple of (width, height)
|
24 |
-
# xc a list of captions to plot
|
25 |
-
b = len(xc)
|
26 |
-
txts = list()
|
27 |
-
for bi in range(b):
|
28 |
-
txt = Image.new("RGB", wh, color="white")
|
29 |
-
draw = ImageDraw.Draw(txt)
|
30 |
-
font = ImageFont.truetype('font/DejaVuSans.ttf', size=size)
|
31 |
-
nc = int(40 * (wh[0] / 256))
|
32 |
-
lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
|
33 |
-
|
34 |
-
try:
|
35 |
-
draw.text((0, 0), lines, fill="black", font=font)
|
36 |
-
except UnicodeEncodeError:
|
37 |
-
print("Cant encode string for logging. Skipping.")
|
38 |
-
|
39 |
-
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
|
40 |
-
txts.append(txt)
|
41 |
-
txts = np.stack(txts)
|
42 |
-
txts = torch.tensor(txts)
|
43 |
-
return txts
|
44 |
-
|
45 |
-
|
46 |
-
def ismap(x):
|
47 |
-
if not isinstance(x, torch.Tensor):
|
48 |
-
return False
|
49 |
-
return (len(x.shape) == 4) and (x.shape[1] > 3)
|
50 |
-
|
51 |
-
|
52 |
-
def isimage(x):
|
53 |
-
if not isinstance(x,torch.Tensor):
|
54 |
-
return False
|
55 |
-
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
|
56 |
-
|
57 |
-
|
58 |
-
def exists(x):
|
59 |
-
return x is not None
|
60 |
-
|
61 |
-
|
62 |
-
def default(val, d):
|
63 |
-
if exists(val):
|
64 |
-
return val
|
65 |
-
return d() if isfunction(d) else d
|
66 |
-
|
67 |
-
|
68 |
-
def mean_flat(tensor):
|
69 |
-
"""
|
70 |
-
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
|
71 |
-
Take the mean over all non-batch dimensions.
|
72 |
-
"""
|
73 |
-
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
74 |
-
|
75 |
-
def count_params(model, verbose=False):
|
76 |
-
total_params = sum(p.numel() for p in model.parameters())
|
77 |
-
if verbose:
|
78 |
-
print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
|
79 |
-
return total_params
|
80 |
-
|
81 |
-
|
82 |
-
def get_state_dict(d):
|
83 |
-
return d.get('state_dict', d)
|
84 |
-
|
85 |
-
|
86 |
-
def load_state_dict(ckpt_path, location='cpu'):
|
87 |
-
_, extension = os.path.splitext(ckpt_path)
|
88 |
-
if extension.lower() == ".safetensors":
|
89 |
-
import safetensors.torch
|
90 |
-
state_dict = safetensors.torch.load_file(ckpt_path, device=location)
|
91 |
-
else:
|
92 |
-
state_dict = get_state_dict(torch.load(ckpt_path, map_location=torch.device(location)))
|
93 |
-
state_dict = get_state_dict(state_dict)
|
94 |
-
print(f'Loaded state_dict from [{ckpt_path}]')
|
95 |
-
return state_dict
|
96 |
-
|
97 |
-
def get_obj_from_str(string, reload=False):
|
98 |
-
module, cls = string.rsplit(".", 1)
|
99 |
-
if reload:
|
100 |
-
module_imp = importlib.import_module(module)
|
101 |
-
importlib.reload(module_imp)
|
102 |
-
return getattr(importlib.import_module(module, package=None), cls)
|
103 |
-
|
104 |
-
def instantiate_from_config(config):
|
105 |
-
if not "target" in config:
|
106 |
-
if config == '__is_first_stage__':
|
107 |
-
return None
|
108 |
-
elif config == "__is_unconditional__":
|
109 |
-
return None
|
110 |
-
raise KeyError("Expected key `target` to instantiate.")
|
111 |
-
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
112 |
-
|
113 |
-
def create_model(config_path):
|
114 |
-
config = OmegaConf.load(config_path)
|
115 |
-
model = instantiate_from_config(config.model).cpu()
|
116 |
-
print(f'Loaded model config from [{config_path}]')
|
117 |
-
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|