Spaces:
Paused
Paused
File size: 18,701 Bytes
74044e0 90d439d 74044e0 6355832 74044e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 |
import re
import uuid
import pandas as pd
import streamlit as st
import re
import matplotlib.pyplot as plt
import subprocess
import sys
import io
from utils.default_values import get_system_prompt, get_guidelines_dict
from utils.epfl_meditron_utils import get_llm_response
from utils.openai_utils import get_available_engines, get_search_query_type_options
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
from sklearn.metrics import classification_report
DATA_FOLDER = "data/"
POC_VERSION = "0.1.0"
MAX_QUESTIONS = 10
AVAILABLE_LANGUAGES = ["DE", "EN", "FR"]
st.set_page_config(page_title='Medgate Whisper PoC', page_icon='public/medgate.png')
# Azure apparently truncates message if longer than 200, see
MAX_SYSTEM_MESSAGE_TOKENS = 200
def format_question(q):
res = q
# Remove numerical prefixes, if any, e.g. '1. [...]'
if re.match(r'^[0-9].\s', q):
res = res[3:]
# Replace doc reference by doc name
if len(st.session_state["citations"]) > 0:
for source_ref in re.findall(r'\[doc[0-9]+\]', res):
citation_number = int(re.findall(r'[0-9]+', source_ref)[0])
citation_index = citation_number - 1 if citation_number > 0 else 0
citation = st.session_state["citations"][citation_index]
source_title = citation["title"]
res = res.replace(source_ref, '[' + source_title + ']')
return res.strip()
def get_text_from_row(text):
res = str(text)
if res == "nan":
return ""
return res
def get_questions_from_df(df, lang, test_scenario_name):
questions = []
for i, row in df.iterrows():
questions.append({
"question": row[lang + ": Fragen"],
"answer": get_text_from_row(row[test_scenario_name]),
"question_id": uuid.uuid4()
})
return questions
def get_questions(df, lead_symptom, lang, test_scenario_name):
print(str(st.session_state["lead_symptom"]) + " -> " + lead_symptom)
print(str(st.session_state["scenario_name"]) + " -> " + test_scenario_name)
if st.session_state["lead_symptom"] != lead_symptom or st.session_state["scenario_name"] != test_scenario_name:
st.session_state["lead_symptom"] = lead_symptom
st.session_state["scenario_name"] = test_scenario_name
symptom_col_name = st.session_state["language"] + ": Symptome"
df_questions = df[(df[symptom_col_name] == lead_symptom)]
st.session_state["questions"] = get_questions_from_df(df_questions, lang, test_scenario_name)
return st.session_state["questions"]
def display_streamlit_sidebar():
st.sidebar.title("Local LLM PoC " + str(POC_VERSION))
st.sidebar.write('**Parameters**')
form = st.sidebar.form("config_form", clear_on_submit=True)
model_option = form.selectbox("Quickly select a model", ("llama", "meditron"))
model_repo_id = form.text_input(label="Repo", value=model_option)#value=st.session_state["model_repo_id"])
model_filename = form.text_input(label="File name", value=st.session_state["model_filename"])
model_type = form.text_input(label="Model type", value=st.session_state["model_type"])
gpu_layers = form.slider('GPU Layers', min_value=0,
max_value=100, value=st.session_state['gpu_layers'], step=1)
system_prompt = ""
#form.text_area(label='System prompt',
# value=st.session_state["system_prompt"])
temperature = form.slider('Temperature (0 = deterministic, 1 = more freedom)', min_value=0.0,
max_value=1.0, value=st.session_state['temperature'], step=0.1)
top_p = form.slider('top_p (0 = focused, 1 = broader answer range)', min_value=0.0,
max_value=1.0, value=st.session_state['top_p'], step=0.1)
form.write('Best practice is to only modify temperature or top_p, not both')
submitted = form.form_submit_button("Start session")
if submitted and not st.session_state['session_started']:
print('Parameters updated...')
restart_session()
st.session_state['session_started'] = True
st.session_state["model_repo_id"] = model_repo_id
st.session_state["model_filename"] = model_filename
st.session_state["model_type"] = model_type
st.session_state['gpu_layers'] = gpu_layers
st.session_state["questions"] = []
st.session_state["lead_symptom"] = None
st.session_state["scenario_name"] = None
st.session_state["system_prompt"] = system_prompt
st.session_state['session_started'] = True
st.session_state["session_started"] = True
st.session_state["temperature"] = temperature
st.session_state["top_p"] = top_p
st.rerun()
def to_str(text):
res = str(text)
if res == "nan":
return " "
return " " + res
def set_df_prompts(path, sheet_name):
df_prompts = pd.read_excel(path, sheet_name, header=None)
for i in range(3, df_prompts.shape[0]):
df_prompts.iloc[2] += df_prompts.iloc[i].apply(to_str)
df_prompts = df_prompts.T
df_prompts = df_prompts[[0, 1, 2]]
df_prompts[0] = df_prompts[0].astype(str)
df_prompts[1] = df_prompts[1].astype(str)
df_prompts[2] = df_prompts[2].astype(str)
df_prompts.columns = ["Questionnaire", "Used Guideline", "Prompt"]
df_prompts = df_prompts[1:]
st.session_state["df_prompts"] = df_prompts
def handle_nbq_click(c):
question_without_source = re.sub(r'\[.*\]', '', c)
question_without_source = question_without_source.strip()
st.session_state['doctor_question'] = question_without_source
def get_doctor_question_value():
if 'doctor_question' in st.session_state:
return st.session_state['doctor_question']
return ''
def update_chat_history(dr_question, patient_reply):
print("update_chat_history" + str(dr_question) + " - " + str(patient_reply) + '...\n')
if dr_question is not None:
dr_msg = {
"role": "Doctor",
"content": dr_question
}
st.session_state["chat_history_array"].append(dr_msg)
if patient_reply is not None:
patient_msg = {
"role": "Patient",
"content": patient_reply
}
st.session_state["chat_history_array"].append(patient_msg)
return st.session_state["chat_history_array"]
def get_chat_history_string(chat_history):
res = ''
for i in chat_history:
if i["role"] == "Doctor":
res += '**Doctor**: ' + str(i["content"].strip()) + " \n "
elif i["role"] == "Patient":
res += '**Patient**: ' + str(i["content"].strip()) + " \n\n "
else:
raise Exception('Unknown role: ' + str(i["role"]))
return res
def restart_session():
print("Resetting params...")
st.session_state["emg_class_enabled"] = False
st.session_state["enable_llm_summary"] = False
st.session_state["num_variants"] = 3
st.session_state["lang_index"] = 0
st.session_state["llm_message"] = ""
st.session_state["llm_messages"] = []
st.session_state["triage_prompt_variants"] = ['''You are a telemedicine triage agent that decides between the following:
Emergency: Patient health is at risk if he doesn't speak to a Doctor urgently
Telecare: Patient can likely be treated remotely
General Practitioner: Patient should visit a GP for an ad-real consultation''',
'''You are a Doctor assistant that decides if a medical case can likely be treated remotely by a Doctor or not.
The remote Doctor can write prescriptions and request the patient to provide a picture.
Provide the triage recommendation first, and then explain your reasoning respecting the format given below:
Treat remotely: <your reasoning>
Treat ad-real: <your reasoning>''',
'''You are a medical triage agent working for the telemedicine Company Medgate based in Switzerland.
You decide if a case can be treated remotely or not, knowing that the remote Doctor can write prescriptions and request pictures.
Provide the triage recommendation first, and then explain your reasoning respecting the format given below:
Treat remotely: <your reasoning>
Treat ad-real: <your reasoning>''']
st.session_state['nbqs'] = []
st.session_state['citations'] = {}
st.session_state['past_messages'] = []
st.session_state["last_request"] = None
st.session_state["last_proposal"] = None
st.session_state['doctor_question'] = ''
st.session_state['patient_reply'] = ''
st.session_state['chat_history_array'] = []
st.session_state['chat_history'] = ''
st.session_state['feed_summary'] = ''
st.session_state['summary'] = ''
st.session_state["selected_guidelines"] = ["General"]
st.session_state["guidelines_dict"] = get_guidelines_dict()
st.session_state["triage_recommendation"] = ''
st.session_state["session_events"] = []
def init_session_state():
print('init_session_state()')
st.session_state['session_started'] = False
st.session_state['guidelines_ignored'] = False
st.session_state['model_index'] = 1
st.session_state["model_repo_id"] = "TheBloke/meditron-7B-GGUF"
st.session_state["model_filename"] = "meditron-7b.Q5_K_S.gguf"
st.session_state["model_type"] = "llama"
st.session_state['gpu_layers'] = 1
default_gender_index = 0
st.session_state['gender'] = get_genders()[default_gender_index]
st.session_state['gender_index'] = default_gender_index
st.session_state['age'] = 30
st.session_state['patient_medical_info'] = ''
default_search_query = 0
st.session_state['search_query_type'] = get_search_query_type_options()[default_search_query]
st.session_state['search_query_type_index'] = default_search_query
st.session_state['engine'] = get_available_engines()[0]
st.session_state['temperature'] = 0.0
st.session_state['top_p'] = 1.0
st.session_state['feed_chat_transcript'] = ''
st.session_state["llm_model"] = True
st.session_state["hugging_face_models"] = True
st.session_state["local_models"] = True
restart_session()
st.session_state['system_prompt'] = get_system_prompt()
st.session_state['system_prompt_after_on_change'] = get_system_prompt()
st.session_state["summary"] = ''
def get_genders():
return ['Male', 'Female']
def display_session_overview():
st.subheader('History of LLM queries')
st.write(st.session_state["llm_messages"])
st.subheader("Session costs overview")
df_session_overview = pd.DataFrame.from_dict(st.session_state["session_events"])
st.write(df_session_overview)
if "prompt_tokens" in df_session_overview:
prompt_tokens = df_session_overview["prompt_tokens"].sum()
st.write("Prompt tokens: " + str(prompt_tokens))
prompt_cost = df_session_overview["prompt_cost_chf"].sum()
st.write("Prompt CHF: " + str(prompt_cost))
completion_tokens = df_session_overview["completion_tokens"].sum()
st.write("Completion tokens: " + str(completion_tokens))
completion_cost = df_session_overview["completion_cost_chf"].sum()
st.write("Completion CHF: " + str(completion_cost))
completion_cost = df_session_overview["total_cost_chf"].sum()
st.write("Total costs CHF: " + str(completion_cost))
total_time = df_session_overview["response_time"].sum()
st.write("Total compute time (ms): " + str(total_time))
def remove_question(question_id):
st.session_state["questions"] = [value for value in st.session_state["questions"] if
str(value["question_id"]) != str(question_id)]
st.rerun()
def get_prompt_from_lead_symptom(df_config, df_prompt, lead_symptom, lang, fallback=True):
de_lead_symptom = lead_symptom
if lang != "DE":
df_lead_symptom = df_config[df_config[lang + ": Symptome"] == lead_symptom]
de_lead_symptom = df_lead_symptom["DE: Symptome"].iloc[0]
print("DE lead symptom: " + de_lead_symptom)
for i, row in df_prompt.iterrows():
if de_lead_symptom in row["Questionnaire"]:
return row["Prompt"]
warning_text = "No guidelines found for lead symptom " + lead_symptom + " (" + de_lead_symptom + ")"
if fallback:
st.toast(warning_text + ", using generic prompt", icon='🚨')
return st.session_state["system_prompt"]
st.toast(warning_text, icon='🚨')
return ""
def get_scenarios(df):
return [v for v in df.columns.values if v.startswith('TLC') or v.startswith('GP')]
def get_gender_age_from_test_scenario(test_scenario):
try:
result = re.search(r"([FM])(\d+)", test_scenario)
res_age = int(result.group(2))
gender = result.group(1)
res_gender = None
if gender == "M":
res_gender = "Male"
elif gender == "F":
res_gender = "Female"
else:
raise Exception('Unexpected gender')
return res_gender, res_age
except:
st.error("Unable to extract name, gender; using 30M as default")
return "Male", 30
def get_freetext_to_reco(reco_freetext_cased, emg_class_enabled=False):
reco_freetext = ""
if reco_freetext_cased:
reco_freetext = reco_freetext_cased.lower()
if reco_freetext.startswith('treat remotely') or reco_freetext.startswith('telecare'):
return 'TELECARE'
if reco_freetext.startswith('treat ad-real') or reco_freetext.startswith('gp') \
or reco_freetext.startswith('general practitioner'):
return 'GP'
if reco_freetext.startswith('emergency') or reco_freetext.startswith('emg') \
or reco_freetext.startswith('urgent'):
if emg_class_enabled:
return 'EMERGENCY'
return 'GP'
if "gp" in reco_freetext or 'general practitioner' in reco_freetext \
or "nicht über tele" in reco_freetext or 'durch einen arzt erford' in reco_freetext \
or "persönliche untersuchung erfordert" in reco_freetext:
return 'GP'
if ("telecare" in reco_freetext or 'telemed' in reco_freetext or
'can be treated remotely' in reco_freetext):
return 'TELECARE'
if ('emergency' in reco_freetext or 'urgent' in reco_freetext or
'not be treated remotely' in reco_freetext or "nicht tele" in reco_freetext):
return 'GP'
warning_msg = 'Cannot extract reco from LLM text: ' + reco_freetext
st.toast(warning_msg)
print(warning_msg)
return 'TRIAGE_IMPOSSIBLE'
def get_structured_reco(row, index, emg_class_enabled):
freetext_reco_col_name = "llm_reco_freetext_" + str(index)
freetext_reco = row[freetext_reco_col_name].lower()
return get_freetext_to_reco(freetext_reco, emg_class_enabled)
def add_expected_dispo(row, emg_class_enabled):
disposition = row["disposition"]
if disposition == "GP" or disposition == "TELECARE":
return disposition
if disposition == "EMERGENCY":
if emg_class_enabled:
return "EMERGENCY"
return "GP"
raise Exception("Missing disposition for row " + str(row.name) + " with summary " + row["case_summary"])
def get_test_scenarios(df):
res = []
for col in df.columns.values:
if str(col).startswith('GP') or str(col).startswith('TLC'):
res.append(col)
return res
def get_transcript(df, test_scenario, lang):
transcript = ""
for i, row in df.iterrows():
transcript += "\nDoctor: " + row[lang + ": Fragen"]
transcript += ", Patient: " + str(row[test_scenario])
return transcript
def get_expected_from_scenario(test_scenario):
reco = test_scenario.split('_')[0]
if reco == "GP":
return "GP"
elif reco == "TLC":
return "TELECARE"
else:
raise Exception('Unexpected reco: ' + reco)
def plot_report(title, expected, predicted, display_labels):
st.markdown('#### ' + title)
conf_matrix = confusion_matrix(expected, predicted, labels=display_labels)
conf_matrix_plot = ConfusionMatrixDisplay(confusion_matrix=conf_matrix, display_labels=display_labels)
conf_matrix_plot.plot()
st.pyplot(plt.gcf())
report = classification_report(expected, predicted, output_dict=True)
df_report = pd.DataFrame(report).transpose()
st.write(df_report)
df_rp = df_report
df_rp = df_rp.drop('support', axis=1)
df_rp = df_rp.drop(['accuracy', 'macro avg', 'weighted avg'])
try:
ax = df_rp.plot(kind="bar", legend=True)
for container in ax.containers:
ax.bar_label(container, fontsize=7)
plt.xticks(rotation=45)
plt.legend(loc=(1.04, 0))
st.pyplot(plt.gcf())
except Exception as e:
# Out of bounds
pass
def get_complete_prompt(generic_prompt, guidelines_prompt):
complete_prompt = ""
if generic_prompt:
complete_prompt += generic_prompt
if generic_prompt and guidelines_prompt:
complete_prompt += ".\n\n"
if guidelines_prompt:
complete_prompt += guidelines_prompt
return complete_prompt
def run_command(args):
"""Run command, transfer stdout/stderr back into Streamlit and manage error"""
cmd = ' '.join(args)
result = subprocess.run(cmd, capture_output=True, text=True)
print(result)
def get_diarized_f_path(audio_f_name):
# TODO p2: Quick hack, cleaner with os or regexes
base_name = audio_f_name.split('.')[0]
return DATA_FOLDER + base_name + ".txt"
def display_llm_output():
st.header("LLM")
form = st.form('llm')
llm_message = form.text_area('Message', value=st.session_state["llm_message"])
api_submitted = form.form_submit_button('Submit')
if api_submitted:
llm_response = get_llm_response(
st.session_state["model_repo_id"],
st.session_state["model_filename"],
st.session_state["model_type"],
st.session_state["gpu_layers"],
llm_message)
st.write(llm_response)
st.write('Done displaying LLM response')
def main():
print('Running Local LLM PoC Streamlit app...')
session_inactive_info = st.empty()
if "session_started" not in st.session_state or not st.session_state["session_started"]:
init_session_state()
display_streamlit_sidebar()
else:
display_streamlit_sidebar()
session_inactive_info.empty()
display_llm_output()
display_session_overview()
if __name__ == '__main__':
main()
|