File size: 18,701 Bytes
74044e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90d439d
 
74044e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6355832
74044e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
import re
import uuid

import pandas as pd
import streamlit as st
import re
import matplotlib.pyplot as plt

import subprocess
import sys
import io

from utils.default_values import get_system_prompt, get_guidelines_dict
from utils.epfl_meditron_utils import get_llm_response
from utils.openai_utils import get_available_engines, get_search_query_type_options

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
from sklearn.metrics import classification_report

DATA_FOLDER = "data/"

POC_VERSION = "0.1.0"
MAX_QUESTIONS = 10
AVAILABLE_LANGUAGES = ["DE", "EN", "FR"]

st.set_page_config(page_title='Medgate Whisper PoC', page_icon='public/medgate.png')

# Azure apparently truncates message if longer than 200, see
MAX_SYSTEM_MESSAGE_TOKENS = 200


def format_question(q):
    res = q

    # Remove numerical prefixes, if any, e.g. '1. [...]'
    if re.match(r'^[0-9].\s', q):
        res = res[3:]

    # Replace doc reference by doc name
    if len(st.session_state["citations"]) > 0:
        for source_ref in re.findall(r'\[doc[0-9]+\]', res):
            citation_number = int(re.findall(r'[0-9]+', source_ref)[0])
            citation_index = citation_number - 1 if citation_number > 0 else 0
            citation = st.session_state["citations"][citation_index]
            source_title = citation["title"]
            res = res.replace(source_ref, '[' + source_title + ']')

    return res.strip()


def get_text_from_row(text):
    res = str(text)
    if res == "nan":
        return ""
    return res
def get_questions_from_df(df, lang, test_scenario_name):
    questions = []
    for i, row in df.iterrows():
        questions.append({
            "question": row[lang + ": Fragen"],
            "answer": get_text_from_row(row[test_scenario_name]),
            "question_id": uuid.uuid4()
        })
    return questions


def get_questions(df, lead_symptom, lang, test_scenario_name):
    print(str(st.session_state["lead_symptom"]) + " -> " + lead_symptom)
    print(str(st.session_state["scenario_name"]) + " -> " + test_scenario_name)
    if st.session_state["lead_symptom"] != lead_symptom or st.session_state["scenario_name"] != test_scenario_name:
        st.session_state["lead_symptom"] = lead_symptom
        st.session_state["scenario_name"] = test_scenario_name
        symptom_col_name = st.session_state["language"] + ": Symptome"
        df_questions = df[(df[symptom_col_name] == lead_symptom)]
        st.session_state["questions"] = get_questions_from_df(df_questions, lang, test_scenario_name)

    return st.session_state["questions"]


def display_streamlit_sidebar():
    st.sidebar.title("Local LLM PoC " + str(POC_VERSION))

    st.sidebar.write('**Parameters**')
    form = st.sidebar.form("config_form", clear_on_submit=True)

    model_option = form.selectbox("Quickly select a model", ("llama", "meditron"))
    model_repo_id = form.text_input(label="Repo", value=model_option)#value=st.session_state["model_repo_id"])
    model_filename = form.text_input(label="File name", value=st.session_state["model_filename"])
    model_type = form.text_input(label="Model type", value=st.session_state["model_type"])
    gpu_layers = form.slider('GPU Layers', min_value=0,
                              max_value=100, value=st.session_state['gpu_layers'], step=1)

    system_prompt = ""
    #form.text_area(label='System prompt',
    #                               value=st.session_state["system_prompt"])
    
    temperature = form.slider('Temperature (0 = deterministic, 1 = more freedom)', min_value=0.0,
                              max_value=1.0, value=st.session_state['temperature'], step=0.1)
    top_p = form.slider('top_p (0 = focused, 1 = broader answer range)', min_value=0.0,
                        max_value=1.0, value=st.session_state['top_p'], step=0.1)

    form.write('Best practice is to only modify temperature or top_p, not both')

    submitted = form.form_submit_button("Start session")
    if submitted and not st.session_state['session_started']:
        print('Parameters updated...')
        restart_session()
        st.session_state['session_started'] = True

        st.session_state["model_repo_id"] = model_repo_id
        st.session_state["model_filename"] = model_filename
        st.session_state["model_type"] = model_type
        st.session_state['gpu_layers'] = gpu_layers

        st.session_state["questions"] = []
        st.session_state["lead_symptom"] = None
        st.session_state["scenario_name"] = None
        st.session_state["system_prompt"] = system_prompt
        st.session_state['session_started'] = True
        st.session_state["session_started"] = True
        st.session_state["temperature"] = temperature
        st.session_state["top_p"] = top_p

        st.rerun()


def to_str(text):
    res = str(text)
    if res == "nan":
        return " "
    return " " + res


def set_df_prompts(path, sheet_name):
    df_prompts = pd.read_excel(path, sheet_name, header=None)
    for i in range(3, df_prompts.shape[0]):
        df_prompts.iloc[2] += df_prompts.iloc[i].apply(to_str)

    df_prompts = df_prompts.T
    df_prompts = df_prompts[[0, 1, 2]]
    df_prompts[0] = df_prompts[0].astype(str)
    df_prompts[1] = df_prompts[1].astype(str)
    df_prompts[2] = df_prompts[2].astype(str)

    df_prompts.columns = ["Questionnaire", "Used Guideline", "Prompt"]
    df_prompts = df_prompts[1:]
    st.session_state["df_prompts"] = df_prompts


def handle_nbq_click(c):
    question_without_source = re.sub(r'\[.*\]', '', c)
    question_without_source = question_without_source.strip()
    st.session_state['doctor_question'] = question_without_source


def get_doctor_question_value():
    if 'doctor_question' in st.session_state:
        return st.session_state['doctor_question']

    return ''


def update_chat_history(dr_question, patient_reply):
    print("update_chat_history" + str(dr_question) + " - " + str(patient_reply) + '...\n')
    if dr_question is not None:
        dr_msg = {
            "role": "Doctor",
            "content": dr_question
        }
        st.session_state["chat_history_array"].append(dr_msg)

    if patient_reply is not None:
        patient_msg = {
            "role": "Patient",
            "content": patient_reply
        }
        st.session_state["chat_history_array"].append(patient_msg)

    return st.session_state["chat_history_array"]


def get_chat_history_string(chat_history):
    res = ''
    for i in chat_history:
        if i["role"] == "Doctor":
            res += '**Doctor**: ' + str(i["content"].strip()) + "  \n  "
        elif i["role"] == "Patient":
            res += '**Patient**: ' + str(i["content"].strip()) + "  \n\n  "
        else:
            raise Exception('Unknown role: ' + str(i["role"]))

    return res


def restart_session():
    print("Resetting params...")
    st.session_state["emg_class_enabled"] = False
    st.session_state["enable_llm_summary"] = False
    st.session_state["num_variants"] = 3
    st.session_state["lang_index"] = 0
    st.session_state["llm_message"] = ""
    st.session_state["llm_messages"] = []

    st.session_state["triage_prompt_variants"] = ['''You are a telemedicine triage agent that decides between the following:
    Emergency: Patient health is at risk if he doesn't speak to a Doctor urgently
    Telecare: Patient can likely be treated remotely
    General Practitioner: Patient should visit a GP for an ad-real consultation''',

                                                  '''You are a Doctor assistant that decides if a medical case can likely be treated remotely by a Doctor or not.
    The remote Doctor can write prescriptions and request the patient to provide a picture.
    Provide the triage recommendation first, and then explain your reasoning respecting the format given below:
    Treat remotely: <your reasoning>
    Treat ad-real: <your reasoning>''',

                                                  '''You are a medical triage agent working for the telemedicine Company Medgate based in Switzerland.
    You decide if a case can be treated remotely or not, knowing that the remote Doctor can write prescriptions and request pictures.
    Provide the triage recommendation first, and then explain your reasoning respecting the format given below:
    Treat remotely: <your reasoning>
    Treat ad-real: <your reasoning>''']

    st.session_state['nbqs'] = []
    st.session_state['citations'] = {}

    st.session_state['past_messages'] = []
    st.session_state["last_request"] = None
    st.session_state["last_proposal"] = None

    st.session_state['doctor_question'] = ''
    st.session_state['patient_reply'] = ''

    st.session_state['chat_history_array'] = []
    st.session_state['chat_history'] = ''

    st.session_state['feed_summary'] = ''
    st.session_state['summary'] = ''

    st.session_state["selected_guidelines"] = ["General"]
    st.session_state["guidelines_dict"] = get_guidelines_dict()

    st.session_state["triage_recommendation"] = ''

    st.session_state["session_events"] = []


def init_session_state():
    print('init_session_state()')
    st.session_state['session_started'] = False
    st.session_state['guidelines_ignored'] = False
    st.session_state['model_index'] = 1

    st.session_state["model_repo_id"] = "TheBloke/meditron-7B-GGUF"
    st.session_state["model_filename"] = "meditron-7b.Q5_K_S.gguf"
    st.session_state["model_type"] = "llama"
    st.session_state['gpu_layers'] = 1

    default_gender_index = 0
    st.session_state['gender'] = get_genders()[default_gender_index]
    st.session_state['gender_index'] = default_gender_index

    st.session_state['age'] = 30

    st.session_state['patient_medical_info'] = ''

    default_search_query = 0
    st.session_state['search_query_type'] = get_search_query_type_options()[default_search_query]
    st.session_state['search_query_type_index'] = default_search_query
    st.session_state['engine'] = get_available_engines()[0]
    st.session_state['temperature'] = 0.0
    st.session_state['top_p'] = 1.0
    st.session_state['feed_chat_transcript'] = ''

    st.session_state["llm_model"] = True
    st.session_state["hugging_face_models"] = True
    st.session_state["local_models"] = True

    restart_session()

    st.session_state['system_prompt'] = get_system_prompt()
    st.session_state['system_prompt_after_on_change'] = get_system_prompt()

    st.session_state["summary"] = ''


def get_genders():
    return ['Male', 'Female']





def display_session_overview():
    st.subheader('History of LLM queries')
    st.write(st.session_state["llm_messages"])
    st.subheader("Session costs overview")

    df_session_overview = pd.DataFrame.from_dict(st.session_state["session_events"])
    st.write(df_session_overview)

    if "prompt_tokens" in df_session_overview:
        prompt_tokens = df_session_overview["prompt_tokens"].sum()
        st.write("Prompt tokens: " + str(prompt_tokens))

        prompt_cost = df_session_overview["prompt_cost_chf"].sum()
        st.write("Prompt CHF: " + str(prompt_cost))

        completion_tokens = df_session_overview["completion_tokens"].sum()
        st.write("Completion tokens: " + str(completion_tokens))

        completion_cost = df_session_overview["completion_cost_chf"].sum()
        st.write("Completion CHF: " + str(completion_cost))

        completion_cost = df_session_overview["total_cost_chf"].sum()
        st.write("Total costs CHF: " + str(completion_cost))

        total_time = df_session_overview["response_time"].sum()
        st.write("Total compute time (ms): " + str(total_time))


def remove_question(question_id):
    st.session_state["questions"] = [value for value in st.session_state["questions"] if
                                     str(value["question_id"]) != str(question_id)]
    st.rerun()


def get_prompt_from_lead_symptom(df_config, df_prompt, lead_symptom, lang, fallback=True):
    de_lead_symptom = lead_symptom

    if lang != "DE":
        df_lead_symptom = df_config[df_config[lang + ": Symptome"] == lead_symptom]
        de_lead_symptom = df_lead_symptom["DE: Symptome"].iloc[0]
        print("DE lead symptom: " + de_lead_symptom)

    for i, row in df_prompt.iterrows():
        if de_lead_symptom in row["Questionnaire"]:
            return row["Prompt"]

    warning_text = "No guidelines found for lead symptom " + lead_symptom + " (" + de_lead_symptom + ")"
    if fallback:
        st.toast(warning_text + ", using generic prompt", icon='🚨')
        return st.session_state["system_prompt"]
    st.toast(warning_text, icon='🚨')

    return ""


def get_scenarios(df):
    return [v for v in df.columns.values if v.startswith('TLC') or v.startswith('GP')]


def get_gender_age_from_test_scenario(test_scenario):
    try:
        result = re.search(r"([FM])(\d+)", test_scenario)
        res_age = int(result.group(2))
        gender = result.group(1)
        res_gender = None
        if gender == "M":
            res_gender = "Male"
        elif gender == "F":
            res_gender = "Female"
        else:
            raise Exception('Unexpected gender')

        return res_gender, res_age

    except:
        st.error("Unable to extract name, gender; using 30M as default")
        return "Male", 30

def get_freetext_to_reco(reco_freetext_cased, emg_class_enabled=False):
    reco_freetext = ""
    if reco_freetext_cased:
        reco_freetext = reco_freetext_cased.lower()

    if reco_freetext.startswith('treat remotely') or reco_freetext.startswith('telecare'):
        return 'TELECARE'
    if reco_freetext.startswith('treat ad-real') or reco_freetext.startswith('gp') \
            or reco_freetext.startswith('general practitioner'):
        return 'GP'
    if reco_freetext.startswith('emergency') or reco_freetext.startswith('emg') \
            or reco_freetext.startswith('urgent'):
        if emg_class_enabled:
            return 'EMERGENCY'
        return 'GP'

    if "gp" in reco_freetext or 'general practitioner' in reco_freetext \
            or "nicht über tele" in reco_freetext or 'durch einen arzt erford' in reco_freetext \
            or "persönliche untersuchung erfordert" in reco_freetext:
        return 'GP'

    if ("telecare" in reco_freetext or 'telemed' in reco_freetext or
            'can be treated remotely' in reco_freetext):
        return 'TELECARE'

    if ('emergency' in reco_freetext or 'urgent' in reco_freetext or
            'not be treated remotely' in reco_freetext or "nicht tele" in reco_freetext):
        return 'GP'

    warning_msg = 'Cannot extract reco from LLM text: ' + reco_freetext
    st.toast(warning_msg)
    print(warning_msg)
    return 'TRIAGE_IMPOSSIBLE'


def get_structured_reco(row, index, emg_class_enabled):
    freetext_reco_col_name = "llm_reco_freetext_" + str(index)
    freetext_reco = row[freetext_reco_col_name].lower()
    return get_freetext_to_reco(freetext_reco, emg_class_enabled)


def add_expected_dispo(row, emg_class_enabled):
    disposition = row["disposition"]
    if disposition == "GP" or disposition == "TELECARE":
        return disposition
    if disposition == "EMERGENCY":
        if emg_class_enabled:
            return "EMERGENCY"
        return "GP"

    raise Exception("Missing disposition for row " + str(row.name) + " with summary " + row["case_summary"])


def get_test_scenarios(df):
    res = []
    for col in df.columns.values:
        if str(col).startswith('GP') or str(col).startswith('TLC'):
            res.append(col)
    return res


def get_transcript(df, test_scenario, lang):
    transcript = ""
    for i, row in df.iterrows():
        transcript += "\nDoctor: " + row[lang + ": Fragen"]
        transcript += ", Patient: " + str(row[test_scenario])
    return transcript


def get_expected_from_scenario(test_scenario):
    reco = test_scenario.split('_')[0]
    if reco == "GP":
        return "GP"
    elif reco == "TLC":
        return "TELECARE"
    else:
        raise Exception('Unexpected reco: ' + reco)


def plot_report(title, expected, predicted, display_labels):
    st.markdown('#### ' + title)
    conf_matrix = confusion_matrix(expected, predicted, labels=display_labels)
    conf_matrix_plot = ConfusionMatrixDisplay(confusion_matrix=conf_matrix, display_labels=display_labels)
    conf_matrix_plot.plot()
    st.pyplot(plt.gcf())

    report = classification_report(expected, predicted, output_dict=True)
    df_report = pd.DataFrame(report).transpose()
    st.write(df_report)

    df_rp = df_report
    df_rp = df_rp.drop('support', axis=1)
    df_rp = df_rp.drop(['accuracy', 'macro avg', 'weighted avg'])

    try:
        ax = df_rp.plot(kind="bar", legend=True)
        for container in ax.containers:
            ax.bar_label(container, fontsize=7)
        plt.xticks(rotation=45)
        plt.legend(loc=(1.04, 0))
        st.pyplot(plt.gcf())
    except Exception as e:
        # Out of bounds
        pass


def get_complete_prompt(generic_prompt, guidelines_prompt):
    complete_prompt = ""
    if generic_prompt:
        complete_prompt += generic_prompt

    if generic_prompt and guidelines_prompt:
        complete_prompt += ".\n\n"

    if guidelines_prompt:
        complete_prompt += guidelines_prompt

    return complete_prompt


def run_command(args):
    """Run command, transfer stdout/stderr back into Streamlit and manage error"""
    cmd = ' '.join(args)
    result = subprocess.run(cmd, capture_output=True, text=True)
    print(result)

def get_diarized_f_path(audio_f_name):
    # TODO p2: Quick hack, cleaner with os or regexes
    base_name = audio_f_name.split('.')[0]
    return DATA_FOLDER + base_name + ".txt"


def display_llm_output():
    st.header("LLM")

    form = st.form('llm')

    llm_message = form.text_area('Message', value=st.session_state["llm_message"])

    api_submitted = form.form_submit_button('Submit')

    if api_submitted:
        llm_response = get_llm_response(
            st.session_state["model_repo_id"],
            st.session_state["model_filename"],
            st.session_state["model_type"],
            st.session_state["gpu_layers"],
            llm_message)
        st.write(llm_response)
        st.write('Done displaying LLM response')

def main():
    print('Running Local LLM PoC Streamlit app...')
    session_inactive_info = st.empty()
    if "session_started" not in st.session_state or not st.session_state["session_started"]:
        init_session_state()
        display_streamlit_sidebar()
    else:
        display_streamlit_sidebar()
        session_inactive_info.empty()
        display_llm_output()
        display_session_overview()


if __name__ == '__main__':
    main()