Spaces:
Runtime error
Runtime error
File size: 7,310 Bytes
89023a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# %%
# an example script of how to do outpainting with diffusers img2img pipeline
# should be compatible with any stable diffusion model
# (only tested with runwayml/stable-diffusion-v1-5)
from typing import Callable, List, Optional, Union
from PIL import Image
import PIL
import numpy as np
import torch
from diffusers import StableDiffusionImg2ImgPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import preprocess
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
revision="fp16",
torch_dtype=torch.float16,
)
pipe.set_use_memory_efficient_attention_xformers(True)
pipe.to("cuda")
# %%
# load the image, extract the mask
rgba = Image.open('primed_image_with_alpha_channel.png')
mask_full = np.array(rgba)[:, :, 3] == 0
rgb = rgba.convert('RGB')
# %%
# resize/convert the mask to the right size
# for 512x512, the mask should be 1x4x64x64
hw = np.array(mask_full.shape)
h, w = (hw - hw % 32) // 8
mask_image = Image.fromarray(mask_full).resize((w, h), Image.NEAREST)
mask = (np.array(mask_image) == 0)[None, None]
mask = np.concatenate([mask]*4, axis=1)
mask = torch.from_numpy(mask).to('cuda')
mask.shape
# %%
@torch.no_grad()
def outpaint(
self: StableDiffusionImg2ImgPipeline,
prompt: Union[str, List[str]] = None,
image: Union[torch.FloatTensor, PIL.Image.Image] = None,
strength: float = 0.8,
num_inference_steps: Optional[int] = 50,
guidance_scale: Optional[float] = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: Optional[float] = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
**kwargs,
):
r"""
copy of the original img2img pipeline's __call__()
https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py
Changes are marked with <EDIT> and </EDIT>
"""
# message = "Please use `image` instead of `init_image`."
# init_image = deprecate("init_image", "0.14.0", message, take_from=kwargs)
# image = init_image or image
# 1. Check inputs. Raise error if not correct
self.check_inputs(prompt, strength, callback_steps,
negative_prompt, prompt_embeds, negative_prompt_embeds)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
prompt_embeds = self._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
# 4. Preprocess image
image = preprocess(image)
# 5. set timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps, num_inference_steps = self.get_timesteps(
num_inference_steps, strength, device)
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
# 6. Prepare latent variables
latents = self.prepare_latents(
image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator
)
# <EDIT>
# store the encoded version of the original image to overwrite
# what the UNET generates "underneath" our image on each step
encoded_original = (self.vae.config.scaling_factor *
self.vae.encode(
image.to(latents.device, latents.dtype)
).latent_dist.mean)
# </EDIT>
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 8. Denoising loop
num_warmup_steps = len(timesteps) - \
num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat(
[latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(
latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t,
encoder_hidden_states=prompt_embeds).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * \
(noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs).prev_sample
# <EDIT> paste unmasked regions from the original image
noise = torch.randn(
encoded_original.shape, generator=generator, device=device)
noised_encoded_original = self.scheduler.add_noise(
encoded_original, noise, t).to(noise_pred.device, noise_pred.dtype)
latents[mask] = noised_encoded_original[mask]
# </EDIT>
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# 9. Post-processing
image = self.decode_latents(latents)
# 10. Run safety checker
image, has_nsfw_concept = self.run_safety_checker(
image, device, prompt_embeds.dtype)
# 11. Convert to PIL
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
# %%
image = outpaint(
pipe,
image=rgb,
prompt="forest in the style of Tim Hildebrandt",
strength=0.5,
num_inference_steps=50,
guidance_scale=7.5,
).images[0]
image
# %%
# the vae does lossy encoding, we could get better quality if we pasted the original image into our result.
# this may yield visible edges
|