Spaces:
Runtime error
Runtime error
File size: 10,337 Bytes
b6dd358 b2a8658 b6dd358 b2a8658 b6dd358 578ad9e b6dd358 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
# %%
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from networks.mat import Generator
import gradio as gr
import gradio.components as gc
import base64
import glob
import os
import random
import re
from http import HTTPStatus
from io import BytesIO
from typing import Dict, List, NamedTuple, Optional, Tuple
import click
import cv2
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
from PIL import Image, ImageDraw, ImageOps
from pydantic import BaseModel
import dnnlib
import legacy
pyspng = None
def num_range(s: str) -> List[int]:
'''Accept either a comma separated list of numbers 'a,b,c' or a range 'a-c' and return as a list of ints.'''
range_re = re.compile(r'^(\d+)-(\d+)$')
m = range_re.match(s)
if m:
return list(range(int(m.group(1)), int(m.group(2))+1))
vals = s.split(',')
return [int(x) for x in vals]
def copy_params_and_buffers(src_module, dst_module, require_all=False):
assert isinstance(src_module, torch.nn.Module)
assert isinstance(dst_module, torch.nn.Module)
src_tensors = {name: tensor for name,
tensor in named_params_and_buffers(src_module)}
for name, tensor in named_params_and_buffers(dst_module):
assert (name in src_tensors) or (not require_all)
if name in src_tensors:
tensor.copy_(src_tensors[name].detach()).requires_grad_(
tensor.requires_grad)
def params_and_buffers(module):
assert isinstance(module, torch.nn.Module)
return list(module.parameters()) + list(module.buffers())
def named_params_and_buffers(module):
assert isinstance(module, torch.nn.Module)
return list(module.named_parameters()) + list(module.named_buffers())
class Inpainter:
def __init__(self,
network_pkl,
resolution=512,
truncation_psi=1,
noise_mode='const',
sdevice='cpu'
):
self.resolution = resolution
self.truncation_psi = truncation_psi
self.noise_mode = noise_mode
print(f'Loading networks from: {network_pkl}')
self.device = torch.device(sdevice)
with dnnlib.util.open_url(network_pkl) as f:
G_saved = (
legacy.load_network_pkl(f)
['G_ema']
.to(self.device)
.eval()
.requires_grad_(False)) # type: ignore
net_res = 512 if resolution > 512 else resolution
self.G = (
Generator(
z_dim=512,
c_dim=0,
w_dim=512,
img_resolution=net_res,
img_channels=3
)
.to(self.device)
.eval()
.requires_grad_(False)
)
copy_params_and_buffers(G_saved, self.G, require_all=True)
def generate_images2(
self,
dpath: List[PIL.Image.Image],
mpath: List[Optional[PIL.Image.Image]],
seed: int = 42,
):
"""
Generate images using pretrained network pickle.
"""
resolution = self.resolution
truncation_psi = self.truncation_psi
noise_mode = self.noise_mode
# seed = 240 # pick up a random number
def seed_all(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
if seed is not None:
seed_all(seed)
# no Labels.
label = torch.zeros([1, self.G.c_dim], device=self.device)
def read_image(image):
image = np.array(image)
if image.ndim == 2:
image = image[:, :, np.newaxis] # HW => HWC
image = np.repeat(image, 3, axis=2)
image = image.transpose(2, 0, 1) # HWC => CHW
image = image[:3]
return image
if resolution != 512:
noise_mode = 'random'
results = []
with torch.no_grad():
for i, (ipath, m) in enumerate(zip(dpath, mpath)):
if seed is None:
seed_all(i)
image = read_image(ipath)
image = (torch.from_numpy(image).float().to(
self. device) / 127.5 - 1).unsqueeze(0)
mask = np.array(m).astype(np.float32) / 255.0
mask = torch.from_numpy(mask).float().to(
self. device).unsqueeze(0).unsqueeze(0)
z = torch.from_numpy(np.random.randn(
1, self.G.z_dim)).to(self.device)
output = self.G(image, mask, z, label,
truncation_psi=truncation_psi, noise_mode=noise_mode)
output = (output.permute(0, 2, 3, 1) * 127.5 +
127.5).round().clamp(0, 255).to(torch.uint8)
output = output[0].cpu().numpy()
results.append(PIL.Image.fromarray(output, 'RGB'))
return results
# if __name__ == "__main__":
# generate_images() # pylint: disable=no-value-for-parameter
# ----------------------------------------------------------------------------
def mask_to_alpha(img, mask):
img = img.copy()
img.putalpha(mask)
return img
def blend(src, target, mask):
mask = np.expand_dims(mask, axis=-1)
result = (1-mask) * src + mask * target
return Image.fromarray(result.astype(np.uint8))
def pad(img, size=(128, 128), tosize=(512, 512), border=1):
if isinstance(size, float):
size = (int(img.size[0] * size), int(img.size[1] * size))
# remove border
w, h = tosize
new_img = Image.new('RGBA', (w, h))
rimg = img.resize(size, resample=Image.Resampling.NEAREST)
rimg = ImageOps.crop(rimg, border=border)
tw, th = size
tw, th = tw - border*2, th - border*2
tc = ((w-tw)//2, (h-th)//2)
new_img.paste(rimg, tc)
mask = Image.new('L', (w, h))
white = Image.new('L', (tw, th), 255)
mask.paste(white, tc)
if 'A' in rimg.getbands():
mask.paste(img.getchannel('A'), tc)
return new_img, mask
def b64_to_img(b64):
return Image.open(BytesIO(base64.b64decode(b64)))
def img_to_b64(img):
with BytesIO() as f:
img.save(f, format='PNG')
return base64.b64encode(f.getvalue()).decode('utf-8')
class Predictor:
def __init__(self):
"""Load the model into memory to make running multiple predictions efficient"""
self.models = {
"places2": Inpainter(
network_pkl='models/Places_512_FullData.pkl',
resolution=512,
truncation_psi=1.,
noise_mode='const',
),
"places2+laion300k": Inpainter(
network_pkl='models/Places_512_FullData+LAION300k.pkl',
resolution=512,
truncation_psi=1.,
noise_mode='const',
),
"places2+laion300k+laion300k(opmasked)": Inpainter(
network_pkl='models/Places_512_FullData+LAION300k+OPM300k.pkl',
resolution=512,
truncation_psi=1.,
noise_mode='const',
),
}
# The arguments and types the model takes as input
def predict(
self,
img: Image.Image,
tosize=(512, 512),
border=5,
seed=42,
size=0.5,
model='places2',
) -> Image:
i, m = pad(
img,
size=size, # (328, 328),
tosize=tosize,
border=border
)
"""Run a single prediction on the model"""
imgs = self.models[model].generate_images2(
dpath=[i.resize((512, 512), resample=Image.Resampling.NEAREST)],
mpath=[m.resize((512, 512), resample=Image.Resampling.NEAREST)],
seed=seed,
)
img_op_raw = imgs[0].convert('RGBA')
img_op_raw = img_op_raw.resize(
tosize, resample=Image.Resampling.NEAREST)
inpainted = img_op_raw.copy()
# paste original image to remove inpainting/scaling artifacts
inpainted = blend(
i,
inpainted,
1-(np.array(m) / 255)
)
minpainted = mask_to_alpha(inpainted, m)
return minpainted, inpainted, ImageOps.invert(m)
predictor = Predictor()
# %%
def _outpaint(img, tosize, border, seed, size, model):
img_op = predictor.predict(
img,
border=border,
seed=seed,
tosize=(tosize, tosize),
size=float(size),
model=model,
)
return img_op
# %%
searchimage = gc.Image(shape=(224, 224), label="image", type='pil')
to_size = gc.Slider(1, 1920, 512, step=1, label='output size')
border = gc.Slider(
1, 50, 0, step=1, label='border to crop from the image before outpainting')
seed = gc.Slider(1, 65536, 10, step=1, label='seed')
size = gc.Slider(0, 1, .5, step=0.01,
label='scale of the image before outpainting')
out = gc.Image(label="primed image with alpha channel", type='pil')
outwithoutalpha = gc.Image(
label="primed image without alpha channel", type='pil')
mask = gc.Image(label="outpainting mask", type='pil')
model = gc.Dropdown(
choices=['places2', 'places2+laion300k', 'places2+laion300k+laion300k(opmasked)'],
value='places2+laion300k+laion300k(opmasked)',
label='model',
)
maturl = 'https://github.com/fenglinglwb/MAT'
gr.Interface(
_outpaint,
[searchimage, to_size, border, seed, size, model],
[outwithoutalpha,out, mask],
title=f"MAT Primer for Stable Diffusion\n\nbased on MAT: Mask-Aware Transformer for Large Hole Image Inpainting\n\n{maturl}",
description=f"""<html>
create an primer for use in stable diffusion outpainting<br>
example with strength 0.5
<img src='file/op.gif' />
</html>""",
analytics_enabled=False,
allow_flagging='never',
).launch()
|