File size: 21,050 Bytes
b6dd358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
// Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
//
// NVIDIA CORPORATION and its licensors retain all intellectual property
// and proprietary rights in and to this software, related documentation
// and any modifications thereto.  Any use, reproduction, disclosure or
// distribution of this software and related documentation without an express
// license agreement from NVIDIA CORPORATION is strictly prohibited.

#include <c10/util/Half.h>
#include "upfirdn2d.h"

//------------------------------------------------------------------------
// Helpers.

template <class T> struct InternalType;
template <> struct InternalType<double>     { typedef double scalar_t; };
template <> struct InternalType<float>      { typedef float  scalar_t; };
template <> struct InternalType<c10::Half>  { typedef float  scalar_t; };

static __device__ __forceinline__ int floor_div(int a, int b)
{
    int t = 1 - a / b;
    return (a + t * b) / b - t;
}

//------------------------------------------------------------------------
// Generic CUDA implementation for large filters.

template <class T> static __global__ void upfirdn2d_kernel_large(upfirdn2d_kernel_params p)
{
    typedef typename InternalType<T>::scalar_t scalar_t;

    // Calculate thread index.
    int minorBase = blockIdx.x * blockDim.x + threadIdx.x;
    int outY = minorBase / p.launchMinor;
    minorBase -= outY * p.launchMinor;
    int outXBase = blockIdx.y * p.loopX * blockDim.y + threadIdx.y;
    int majorBase = blockIdx.z * p.loopMajor;
    if (outXBase >= p.outSize.x | outY >= p.outSize.y | majorBase >= p.sizeMajor)
        return;

    // Setup Y receptive field.
    int midY = outY * p.down.y + p.up.y - 1 - p.pad0.y;
    int inY = min(max(floor_div(midY, p.up.y), 0), p.inSize.y);
    int h = min(max(floor_div(midY + p.filterSize.y, p.up.y), 0), p.inSize.y) - inY;
    int filterY = midY + p.filterSize.y - (inY + 1) * p.up.y;
    if (p.flip)
        filterY = p.filterSize.y - 1 - filterY;

    // Loop over major, minor, and X.
    for (int majorIdx = 0, major = majorBase; majorIdx < p.loopMajor & major < p.sizeMajor; majorIdx++, major++)
    for (int minorIdx = 0, minor = minorBase; minorIdx < p.loopMinor & minor < p.sizeMinor; minorIdx++, minor += p.launchMinor)
    {
        int nc = major * p.sizeMinor + minor;
        int n = nc / p.inSize.z;
        int c = nc - n * p.inSize.z;
        for (int loopX = 0, outX = outXBase; loopX < p.loopX & outX < p.outSize.x; loopX++, outX += blockDim.y)
        {
            // Setup X receptive field.
            int midX = outX * p.down.x + p.up.x - 1 - p.pad0.x;
            int inX = min(max(floor_div(midX, p.up.x), 0), p.inSize.x);
            int w = min(max(floor_div(midX + p.filterSize.x, p.up.x), 0), p.inSize.x) - inX;
            int filterX = midX + p.filterSize.x - (inX + 1) * p.up.x;
            if (p.flip)
                filterX = p.filterSize.x - 1 - filterX;

            // Initialize pointers.
            const T* xp = &((const T*)p.x)[inX * p.inStride.x + inY * p.inStride.y + c * p.inStride.z + n * p.inStride.w];
            const float* fp = &p.f[filterX * p.filterStride.x + filterY * p.filterStride.y];
            int filterStepX = ((p.flip) ? p.up.x : -p.up.x) * p.filterStride.x;
            int filterStepY = ((p.flip) ? p.up.y : -p.up.y) * p.filterStride.y;

            // Inner loop.
            scalar_t v = 0;
            for (int y = 0; y < h; y++)
            {
                for (int x = 0; x < w; x++)
                {
                    v += (scalar_t)(*xp) * (scalar_t)(*fp);
                    xp += p.inStride.x;
                    fp += filterStepX;
                }
                xp += p.inStride.y - w * p.inStride.x;
                fp += filterStepY - w * filterStepX;
            }

            // Store result.
            v *= p.gain;
            ((T*)p.y)[outX * p.outStride.x + outY * p.outStride.y + c * p.outStride.z + n * p.outStride.w] = (T)v;
        }
    }
}

//------------------------------------------------------------------------
// Specialized CUDA implementation for small filters.

template <class T, int upx, int upy, int downx, int downy, int filterW, int filterH, int tileOutW, int tileOutH, int loopMinor>
static __global__ void upfirdn2d_kernel_small(upfirdn2d_kernel_params p)
{
    typedef typename InternalType<T>::scalar_t scalar_t;
    const int tileInW = ((tileOutW - 1) * downx + filterW - 1) / upx + 1;
    const int tileInH = ((tileOutH - 1) * downy + filterH - 1) / upy + 1;
    __shared__ volatile scalar_t sf[filterH][filterW];
    __shared__ volatile scalar_t sx[tileInH][tileInW][loopMinor];

    // Calculate tile index.
    int minorBase = blockIdx.x;
    int tileOutY = minorBase / p.launchMinor;
    minorBase -= tileOutY * p.launchMinor;
    minorBase *= loopMinor;
    tileOutY *= tileOutH;
    int tileOutXBase = blockIdx.y * p.loopX * tileOutW;
    int majorBase = blockIdx.z * p.loopMajor;
    if (tileOutXBase >= p.outSize.x | tileOutY >= p.outSize.y | majorBase >= p.sizeMajor)
        return;

    // Load filter (flipped).
    for (int tapIdx = threadIdx.x; tapIdx < filterH * filterW; tapIdx += blockDim.x)
    {
        int fy = tapIdx / filterW;
        int fx = tapIdx - fy * filterW;
        scalar_t v = 0;
        if (fx < p.filterSize.x & fy < p.filterSize.y)
        {
            int ffx = (p.flip) ? fx : p.filterSize.x - 1 - fx;
            int ffy = (p.flip) ? fy : p.filterSize.y - 1 - fy;
            v = (scalar_t)p.f[ffx * p.filterStride.x + ffy * p.filterStride.y];
        }
        sf[fy][fx] = v;
    }

    // Loop over major and X.
    for (int majorIdx = 0, major = majorBase; majorIdx < p.loopMajor & major < p.sizeMajor; majorIdx++, major++)
    {
        int baseNC = major * p.sizeMinor + minorBase;
        int n = baseNC / p.inSize.z;
        int baseC = baseNC - n * p.inSize.z;
        for (int loopX = 0, tileOutX = tileOutXBase; loopX < p.loopX & tileOutX < p.outSize.x; loopX++, tileOutX += tileOutW)
        {
            // Load input pixels.
            int tileMidX = tileOutX * downx + upx - 1 - p.pad0.x;
            int tileMidY = tileOutY * downy + upy - 1 - p.pad0.y;
            int tileInX = floor_div(tileMidX, upx);
            int tileInY = floor_div(tileMidY, upy);
            __syncthreads();
            for (int inIdx = threadIdx.x; inIdx < tileInH * tileInW * loopMinor; inIdx += blockDim.x)
            {
                int relC = inIdx;
                int relInX = relC / loopMinor;
                int relInY = relInX / tileInW;
                relC -= relInX * loopMinor;
                relInX -= relInY * tileInW;
                int c = baseC + relC;
                int inX = tileInX + relInX;
                int inY = tileInY + relInY;
                scalar_t v = 0;
                if (inX >= 0 & inY >= 0 & inX < p.inSize.x & inY < p.inSize.y & c < p.inSize.z)
                    v = (scalar_t)((const T*)p.x)[inX * p.inStride.x + inY * p.inStride.y + c * p.inStride.z + n * p.inStride.w];
                sx[relInY][relInX][relC] = v;
            }

            // Loop over output pixels.
            __syncthreads();
            for (int outIdx = threadIdx.x; outIdx < tileOutH * tileOutW * loopMinor; outIdx += blockDim.x)
            {
                int relC = outIdx;
                int relOutX = relC / loopMinor;
                int relOutY = relOutX / tileOutW;
                relC -= relOutX * loopMinor;
                relOutX -= relOutY * tileOutW;
                int c = baseC + relC;
                int outX = tileOutX + relOutX;
                int outY = tileOutY + relOutY;

                // Setup receptive field.
                int midX = tileMidX + relOutX * downx;
                int midY = tileMidY + relOutY * downy;
                int inX = floor_div(midX, upx);
                int inY = floor_div(midY, upy);
                int relInX = inX - tileInX;
                int relInY = inY - tileInY;
                int filterX = (inX + 1) * upx - midX - 1; // flipped
                int filterY = (inY + 1) * upy - midY - 1; // flipped

                // Inner loop.
                if (outX < p.outSize.x & outY < p.outSize.y & c < p.outSize.z)
                {
                    scalar_t v = 0;
                    #pragma unroll
                    for (int y = 0; y < filterH / upy; y++)
                        #pragma unroll
                        for (int x = 0; x < filterW / upx; x++)
                            v += sx[relInY + y][relInX + x][relC] * sf[filterY + y * upy][filterX + x * upx];
                    v *= p.gain;
                    ((T*)p.y)[outX * p.outStride.x + outY * p.outStride.y + c * p.outStride.z + n * p.outStride.w] = (T)v;
                }
            }
        }
    }
}

//------------------------------------------------------------------------
// CUDA kernel selection.

template <class T> upfirdn2d_kernel_spec choose_upfirdn2d_kernel(const upfirdn2d_kernel_params& p)
{
    int s = p.inStride.z, fx = p.filterSize.x, fy = p.filterSize.y;

    upfirdn2d_kernel_spec spec = {(void*)upfirdn2d_kernel_large<T>, -1,-1,1, 4}; // contiguous
    if (s == 1)           spec = {(void*)upfirdn2d_kernel_large<T>, -1,-1,4, 1}; // channels_last

    if (s != 1 && p.up.x == 1 && p.up.y == 1 && p.down.x == 1 && p.down.y == 1) // contiguous
    {
        if (fx <= 7  && fy <= 7 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 7,7,  64,16,1>, 64,16,1, 1};
        if (fx <= 6  && fy <= 6 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 6,6,  64,16,1>, 64,16,1, 1};
        if (fx <= 5  && fy <= 5 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 5,5,  64,16,1>, 64,16,1, 1};
        if (fx <= 4  && fy <= 4 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 4,4,  64,16,1>, 64,16,1, 1};
        if (fx <= 3  && fy <= 3 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 3,3,  64,16,1>, 64,16,1, 1};
        if (fx <= 24 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 24,1, 128,8,1>, 128,8,1, 1};
        if (fx <= 20 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 20,1, 128,8,1>, 128,8,1, 1};
        if (fx <= 16 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 16,1, 128,8,1>, 128,8,1, 1};
        if (fx <= 12 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 12,1, 128,8,1>, 128,8,1, 1};
        if (fx <= 8  && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 8,1,  128,8,1>, 128,8,1, 1};
        if (fx <= 1  && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 1,24, 32,32,1>, 32,32,1, 1};
        if (fx <= 1  && fy <= 20) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 1,20, 32,32,1>, 32,32,1, 1};
        if (fx <= 1  && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 1,16, 32,32,1>, 32,32,1, 1};
        if (fx <= 1  && fy <= 12) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 1,12, 32,32,1>, 32,32,1, 1};
        if (fx <= 1  && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 1,8,  32,32,1>, 32,32,1, 1};
    }
    if (s == 1 && p.up.x == 1 && p.up.y == 1 && p.down.x == 1 && p.down.y == 1) // channels_last
    {
        if (fx <= 7  && fy <= 7 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 7,7,  16,16,8>,  16,16,8,  1};
        if (fx <= 6  && fy <= 6 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 4,4,  16,16,8>,  16,16,8,  1};
        if (fx <= 5  && fy <= 5 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 4,4,  16,16,8>,  16,16,8,  1};
        if (fx <= 4  && fy <= 4 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 4,4,  16,16,8>,  16,16,8,  1};
        if (fx <= 3  && fy <= 3 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 4,4,  16,16,8>,  16,16,8,  1};
        if (fx <= 24 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 24,1, 128,1,16>, 128,1,16, 1};
        if (fx <= 20 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 20,1, 128,1,16>, 128,1,16, 1};
        if (fx <= 16 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 16,1, 128,1,16>, 128,1,16, 1};
        if (fx <= 12 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 12,1, 128,1,16>, 128,1,16, 1};
        if (fx <= 8  && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 8,1,  128,1,16>, 128,1,16, 1};
        if (fx <= 1  && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 1,24, 1,128,16>, 1,128,16, 1};
        if (fx <= 1  && fy <= 20) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 1,20, 1,128,16>, 1,128,16, 1};
        if (fx <= 1  && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 1,16, 1,128,16>, 1,128,16, 1};
        if (fx <= 1  && fy <= 12) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 1,12, 1,128,16>, 1,128,16, 1};
        if (fx <= 1  && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 1,8,  1,128,16>, 1,128,16, 1};
    }
    if (s != 1 && p.up.x == 2 && p.up.y == 2 && p.down.x == 1 && p.down.y == 1) // contiguous
    {
        if (fx <= 8  && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 8,8, 64,16,1>, 64,16,1, 1};
        if (fx <= 6  && fy <= 6 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 6,6, 64,16,1>, 64,16,1, 1};
        if (fx <= 4  && fy <= 4 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 4,4, 64,16,1>, 64,16,1, 1};
        if (fx <= 2  && fy <= 2 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 2,2, 64,16,1>, 64,16,1, 1};
    }
    if (s == 1 && p.up.x == 2 && p.up.y == 2 && p.down.x == 1 && p.down.y == 1) // channels_last
    {
        if (fx <= 8  && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 8,8, 16,16,8>, 16,16,8, 1};
        if (fx <= 6  && fy <= 6 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 6,6, 16,16,8>, 16,16,8, 1};
        if (fx <= 4  && fy <= 4 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 4,4, 16,16,8>, 16,16,8, 1};
        if (fx <= 2  && fy <= 2 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 2,2, 16,16,8>, 16,16,8, 1};
    }
    if (s != 1 && p.up.x == 2 && p.up.y == 1 && p.down.x == 1 && p.down.y == 1) // contiguous
    {
        if (fx <= 24 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,1, 1,1, 24,1, 128,8,1>, 128,8,1, 1};
        if (fx <= 20 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,1, 1,1, 20,1, 128,8,1>, 128,8,1, 1};
        if (fx <= 16 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,1, 1,1, 16,1, 128,8,1>, 128,8,1, 1};
        if (fx <= 12 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,1, 1,1, 12,1, 128,8,1>, 128,8,1, 1};
        if (fx <= 8  && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,1, 1,1, 8,1,  128,8,1>, 128,8,1, 1};
    }
    if (s == 1 && p.up.x == 2 && p.up.y == 1 && p.down.x == 1 && p.down.y == 1) // channels_last
    {
        if (fx <= 24 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,1, 1,1, 24,1, 128,1,16>, 128,1,16, 1};
        if (fx <= 20 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,1, 1,1, 20,1, 128,1,16>, 128,1,16, 1};
        if (fx <= 16 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,1, 1,1, 16,1, 128,1,16>, 128,1,16, 1};
        if (fx <= 12 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,1, 1,1, 12,1, 128,1,16>, 128,1,16, 1};
        if (fx <= 8  && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,1, 1,1, 8,1,  128,1,16>, 128,1,16, 1};
    }
    if (s != 1 && p.up.x == 1 && p.up.y == 2 && p.down.x == 1 && p.down.y == 1) // contiguous
    {
        if (fx <= 1  && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 1,2, 1,1, 1,24, 32,32,1>, 32,32,1, 1};
        if (fx <= 1  && fy <= 20) spec = {(void*)upfirdn2d_kernel_small<T, 1,2, 1,1, 1,20, 32,32,1>, 32,32,1, 1};
        if (fx <= 1  && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 1,2, 1,1, 1,16, 32,32,1>, 32,32,1, 1};
        if (fx <= 1  && fy <= 12) spec = {(void*)upfirdn2d_kernel_small<T, 1,2, 1,1, 1,12, 32,32,1>, 32,32,1, 1};
        if (fx <= 1  && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,2, 1,1, 1,8,  32,32,1>, 32,32,1, 1};
    }
    if (s == 1 && p.up.x == 1 && p.up.y == 2 && p.down.x == 1 && p.down.y == 1) // channels_last
    {
        if (fx <= 1  && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 1,2, 1,1, 1,24, 1,128,16>, 1,128,16, 1};
        if (fx <= 1  && fy <= 20) spec = {(void*)upfirdn2d_kernel_small<T, 1,2, 1,1, 1,20, 1,128,16>, 1,128,16, 1};
        if (fx <= 1  && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 1,2, 1,1, 1,16, 1,128,16>, 1,128,16, 1};
        if (fx <= 1  && fy <= 12) spec = {(void*)upfirdn2d_kernel_small<T, 1,2, 1,1, 1,12, 1,128,16>, 1,128,16, 1};
        if (fx <= 1  && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,2, 1,1, 1,8,  1,128,16>, 1,128,16, 1};
    }
    if (s != 1 && p.up.x == 1 && p.up.y == 1 && p.down.x == 2 && p.down.y == 2) // contiguous
    {
        if (fx <= 8  && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 8,8,  32,8,1>, 32,8,1, 1};
        if (fx <= 6  && fy <= 6 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 6,6,  32,8,1>, 32,8,1, 1};
        if (fx <= 4  && fy <= 4 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 4,4,  32,8,1>, 32,8,1, 1};
        if (fx <= 2  && fy <= 2 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 2,2,  32,8,1>, 32,8,1, 1};
    }
    if (s == 1 && p.up.x == 1 && p.up.y == 1 && p.down.x == 2 && p.down.y == 2) // channels_last
    {
        if (fx <= 8  && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 8,8,  8,8,8>, 8,8,8, 1};
        if (fx <= 6  && fy <= 6 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 6,6,  8,8,8>, 8,8,8, 1};
        if (fx <= 4  && fy <= 4 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 4,4,  8,8,8>, 8,8,8, 1};
        if (fx <= 2  && fy <= 2 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 2,2,  8,8,8>, 8,8,8, 1};
    }
    if (s != 1 && p.up.x == 1 && p.up.y == 1 && p.down.x == 2 && p.down.y == 1) // contiguous
    {
        if (fx <= 24 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,1, 24,1, 64,8,1>, 64,8,1, 1};
        if (fx <= 20 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,1, 20,1, 64,8,1>, 64,8,1, 1};
        if (fx <= 16 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,1, 16,1, 64,8,1>, 64,8,1, 1};
        if (fx <= 12 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,1, 12,1, 64,8,1>, 64,8,1, 1};
        if (fx <= 8  && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,1, 8,1,  64,8,1>, 64,8,1, 1};
    }
    if (s == 1 && p.up.x == 1 && p.up.y == 1 && p.down.x == 2 && p.down.y == 1) // channels_last
    {
        if (fx <= 24 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,1, 24,1, 64,1,8>, 64,1,8, 1};
        if (fx <= 20 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,1, 20,1, 64,1,8>, 64,1,8, 1};
        if (fx <= 16 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,1, 16,1, 64,1,8>, 64,1,8, 1};
        if (fx <= 12 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,1, 12,1, 64,1,8>, 64,1,8, 1};
        if (fx <= 8  && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,1, 8,1,  64,1,8>, 64,1,8, 1};
    }
    if (s != 1 && p.up.x == 1 && p.up.y == 1 && p.down.x == 1 && p.down.y == 2) // contiguous
    {
        if (fx <= 1  && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,2, 1,24, 32,16,1>, 32,16,1, 1};
        if (fx <= 1  && fy <= 20) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,2, 1,20, 32,16,1>, 32,16,1, 1};
        if (fx <= 1  && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,2, 1,16, 32,16,1>, 32,16,1, 1};
        if (fx <= 1  && fy <= 12) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,2, 1,12, 32,16,1>, 32,16,1, 1};
        if (fx <= 1  && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,2, 1,8,  32,16,1>, 32,16,1, 1};
    }
    if (s == 1 && p.up.x == 1 && p.up.y == 1 && p.down.x == 1 && p.down.y == 2) // channels_last
    {
        if (fx <= 1  && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,2, 1,24, 1,64,8>, 1,64,8, 1};
        if (fx <= 1  && fy <= 20) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,2, 1,20, 1,64,8>, 1,64,8, 1};
        if (fx <= 1  && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,2, 1,16, 1,64,8>, 1,64,8, 1};
        if (fx <= 1  && fy <= 12) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,2, 1,12, 1,64,8>, 1,64,8, 1};
        if (fx <= 1  && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,2, 1,8,  1,64,8>, 1,64,8, 1};
    }
    return spec;
}

//------------------------------------------------------------------------
// Template specializations.

template upfirdn2d_kernel_spec choose_upfirdn2d_kernel<double>   (const upfirdn2d_kernel_params& p);
template upfirdn2d_kernel_spec choose_upfirdn2d_kernel<float>    (const upfirdn2d_kernel_params& p);
template upfirdn2d_kernel_spec choose_upfirdn2d_kernel<c10::Half>(const upfirdn2d_kernel_params& p);

//------------------------------------------------------------------------