max
reinit
b6dd358
raw
history blame
26.2 kB
import sys
sys.path.insert(0, '../')
from collections import OrderedDict
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_utils import misc
from torch_utils import persistence
from torch_utils.ops import conv2d_resample
from torch_utils.ops import upfirdn2d
from torch_utils.ops import bias_act
#----------------------------------------------------------------------------
@misc.profiled_function
def normalize_2nd_moment(x, dim=1, eps=1e-8):
return x * (x.square().mean(dim=dim, keepdim=True) + eps).rsqrt()
#----------------------------------------------------------------------------
@persistence.persistent_class
class FullyConnectedLayer(nn.Module):
def __init__(self,
in_features, # Number of input features.
out_features, # Number of output features.
bias = True, # Apply additive bias before the activation function?
activation = 'linear', # Activation function: 'relu', 'lrelu', etc.
lr_multiplier = 1, # Learning rate multiplier.
bias_init = 0, # Initial value for the additive bias.
):
super().__init__()
self.weight = torch.nn.Parameter(torch.randn([out_features, in_features]) / lr_multiplier)
self.bias = torch.nn.Parameter(torch.full([out_features], np.float32(bias_init))) if bias else None
self.activation = activation
self.weight_gain = lr_multiplier / np.sqrt(in_features)
self.bias_gain = lr_multiplier
def forward(self, x):
w = self.weight * self.weight_gain
b = self.bias
if b is not None and self.bias_gain != 1:
b = b * self.bias_gain
if self.activation == 'linear' and b is not None:
# out = torch.addmm(b.unsqueeze(0), x, w.t())
x = x.matmul(w.t())
out = x + b.reshape([-1 if i == x.ndim-1 else 1 for i in range(x.ndim)])
else:
x = x.matmul(w.t())
out = bias_act.bias_act(x, b, act=self.activation, dim=x.ndim-1)
return out
#----------------------------------------------------------------------------
@persistence.persistent_class
class Conv2dLayer(nn.Module):
def __init__(self,
in_channels, # Number of input channels.
out_channels, # Number of output channels.
kernel_size, # Width and height of the convolution kernel.
bias = True, # Apply additive bias before the activation function?
activation = 'linear', # Activation function: 'relu', 'lrelu', etc.
up = 1, # Integer upsampling factor.
down = 1, # Integer downsampling factor.
resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations.
conv_clamp = None, # Clamp the output to +-X, None = disable clamping.
trainable = True, # Update the weights of this layer during training?
):
super().__init__()
self.activation = activation
self.up = up
self.down = down
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter))
self.conv_clamp = conv_clamp
self.padding = kernel_size // 2
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2))
self.act_gain = bias_act.activation_funcs[activation].def_gain
weight = torch.randn([out_channels, in_channels, kernel_size, kernel_size])
bias = torch.zeros([out_channels]) if bias else None
if trainable:
self.weight = torch.nn.Parameter(weight)
self.bias = torch.nn.Parameter(bias) if bias is not None else None
else:
self.register_buffer('weight', weight)
if bias is not None:
self.register_buffer('bias', bias)
else:
self.bias = None
def forward(self, x, gain=1):
w = self.weight * self.weight_gain
x = conv2d_resample.conv2d_resample(x=x, w=w, f=self.resample_filter, up=self.up, down=self.down,
padding=self.padding)
act_gain = self.act_gain * gain
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None
out = bias_act.bias_act(x, self.bias, act=self.activation, gain=act_gain, clamp=act_clamp)
return out
#----------------------------------------------------------------------------
@persistence.persistent_class
class ModulatedConv2d(nn.Module):
def __init__(self,
in_channels, # Number of input channels.
out_channels, # Number of output channels.
kernel_size, # Width and height of the convolution kernel.
style_dim, # dimension of the style code
demodulate=True, # perfrom demodulation
up=1, # Integer upsampling factor.
down=1, # Integer downsampling factor.
resample_filter=[1,3,3,1], # Low-pass filter to apply when resampling activations.
conv_clamp=None, # Clamp the output to +-X, None = disable clamping.
):
super().__init__()
self.demodulate = demodulate
self.weight = torch.nn.Parameter(torch.randn([1, out_channels, in_channels, kernel_size, kernel_size]))
self.out_channels = out_channels
self.kernel_size = kernel_size
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2))
self.padding = self.kernel_size // 2
self.up = up
self.down = down
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter))
self.conv_clamp = conv_clamp
self.affine = FullyConnectedLayer(style_dim, in_channels, bias_init=1)
def forward(self, x, style):
batch, in_channels, height, width = x.shape
style = self.affine(style).view(batch, 1, in_channels, 1, 1)
weight = self.weight * self.weight_gain * style
if self.demodulate:
decoefs = (weight.pow(2).sum(dim=[2, 3, 4]) + 1e-8).rsqrt()
weight = weight * decoefs.view(batch, self.out_channels, 1, 1, 1)
weight = weight.view(batch * self.out_channels, in_channels, self.kernel_size, self.kernel_size)
x = x.view(1, batch * in_channels, height, width)
x = conv2d_resample.conv2d_resample(x=x, w=weight, f=self.resample_filter, up=self.up, down=self.down,
padding=self.padding, groups=batch)
out = x.view(batch, self.out_channels, *x.shape[2:])
return out
#----------------------------------------------------------------------------
@persistence.persistent_class
class StyleConv(torch.nn.Module):
def __init__(self,
in_channels, # Number of input channels.
out_channels, # Number of output channels.
style_dim, # Intermediate latent (W) dimensionality.
resolution, # Resolution of this layer.
kernel_size = 3, # Convolution kernel size.
up = 1, # Integer upsampling factor.
use_noise = True, # Enable noise input?
activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc.
resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations.
conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping.
demodulate = True, # perform demodulation
):
super().__init__()
self.conv = ModulatedConv2d(in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
style_dim=style_dim,
demodulate=demodulate,
up=up,
resample_filter=resample_filter,
conv_clamp=conv_clamp)
self.use_noise = use_noise
self.resolution = resolution
if use_noise:
self.register_buffer('noise_const', torch.randn([resolution, resolution]))
self.noise_strength = torch.nn.Parameter(torch.zeros([]))
self.bias = torch.nn.Parameter(torch.zeros([out_channels]))
self.activation = activation
self.act_gain = bias_act.activation_funcs[activation].def_gain
self.conv_clamp = conv_clamp
def forward(self, x, style, noise_mode='random', gain=1):
x = self.conv(x, style)
assert noise_mode in ['random', 'const', 'none']
if self.use_noise:
if noise_mode == 'random':
xh, xw = x.size()[-2:]
noise = torch.randn([x.shape[0], 1, xh, xw], device=x.device) \
* self.noise_strength
if noise_mode == 'const':
noise = self.noise_const * self.noise_strength
x = x + noise
act_gain = self.act_gain * gain
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None
out = bias_act.bias_act(x, self.bias, act=self.activation, gain=act_gain, clamp=act_clamp)
return out
#----------------------------------------------------------------------------
@persistence.persistent_class
class ToRGB(torch.nn.Module):
def __init__(self,
in_channels,
out_channels,
style_dim,
kernel_size=1,
resample_filter=[1,3,3,1],
conv_clamp=None,
demodulate=False):
super().__init__()
self.conv = ModulatedConv2d(in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
style_dim=style_dim,
demodulate=demodulate,
resample_filter=resample_filter,
conv_clamp=conv_clamp)
self.bias = torch.nn.Parameter(torch.zeros([out_channels]))
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter))
self.conv_clamp = conv_clamp
def forward(self, x, style, skip=None):
x = self.conv(x, style)
out = bias_act.bias_act(x, self.bias, clamp=self.conv_clamp)
if skip is not None:
if skip.shape != out.shape:
skip = upfirdn2d.upsample2d(skip, self.resample_filter)
out = out + skip
return out
#----------------------------------------------------------------------------
@misc.profiled_function
def get_style_code(a, b):
return torch.cat([a, b], dim=1)
#----------------------------------------------------------------------------
@persistence.persistent_class
class DecBlockFirst(nn.Module):
def __init__(self, in_channels, out_channels, activation, style_dim, use_noise, demodulate, img_channels):
super().__init__()
self.fc = FullyConnectedLayer(in_features=in_channels*2,
out_features=in_channels*4**2,
activation=activation)
self.conv = StyleConv(in_channels=in_channels,
out_channels=out_channels,
style_dim=style_dim,
resolution=4,
kernel_size=3,
use_noise=use_noise,
activation=activation,
demodulate=demodulate,
)
self.toRGB = ToRGB(in_channels=out_channels,
out_channels=img_channels,
style_dim=style_dim,
kernel_size=1,
demodulate=False,
)
def forward(self, x, ws, gs, E_features, noise_mode='random'):
x = self.fc(x).view(x.shape[0], -1, 4, 4)
x = x + E_features[2]
style = get_style_code(ws[:, 0], gs)
x = self.conv(x, style, noise_mode=noise_mode)
style = get_style_code(ws[:, 1], gs)
img = self.toRGB(x, style, skip=None)
return x, img
@persistence.persistent_class
class DecBlockFirstV2(nn.Module):
def __init__(self, in_channels, out_channels, activation, style_dim, use_noise, demodulate, img_channels):
super().__init__()
self.conv0 = Conv2dLayer(in_channels=in_channels,
out_channels=in_channels,
kernel_size=3,
activation=activation,
)
self.conv1 = StyleConv(in_channels=in_channels,
out_channels=out_channels,
style_dim=style_dim,
resolution=4,
kernel_size=3,
use_noise=use_noise,
activation=activation,
demodulate=demodulate,
)
self.toRGB = ToRGB(in_channels=out_channels,
out_channels=img_channels,
style_dim=style_dim,
kernel_size=1,
demodulate=False,
)
def forward(self, x, ws, gs, E_features, noise_mode='random'):
# x = self.fc(x).view(x.shape[0], -1, 4, 4)
x = self.conv0(x)
x = x + E_features[2]
style = get_style_code(ws[:, 0], gs)
x = self.conv1(x, style, noise_mode=noise_mode)
style = get_style_code(ws[:, 1], gs)
img = self.toRGB(x, style, skip=None)
return x, img
#----------------------------------------------------------------------------
@persistence.persistent_class
class DecBlock(nn.Module):
def __init__(self, res, in_channels, out_channels, activation, style_dim, use_noise, demodulate, img_channels): # res = 2, ..., resolution_log2
super().__init__()
self.res = res
self.conv0 = StyleConv(in_channels=in_channels,
out_channels=out_channels,
style_dim=style_dim,
resolution=2**res,
kernel_size=3,
up=2,
use_noise=use_noise,
activation=activation,
demodulate=demodulate,
)
self.conv1 = StyleConv(in_channels=out_channels,
out_channels=out_channels,
style_dim=style_dim,
resolution=2**res,
kernel_size=3,
use_noise=use_noise,
activation=activation,
demodulate=demodulate,
)
self.toRGB = ToRGB(in_channels=out_channels,
out_channels=img_channels,
style_dim=style_dim,
kernel_size=1,
demodulate=False,
)
def forward(self, x, img, ws, gs, E_features, noise_mode='random'):
style = get_style_code(ws[:, self.res * 2 - 5], gs)
x = self.conv0(x, style, noise_mode=noise_mode)
x = x + E_features[self.res]
style = get_style_code(ws[:, self.res * 2 - 4], gs)
x = self.conv1(x, style, noise_mode=noise_mode)
style = get_style_code(ws[:, self.res * 2 - 3], gs)
img = self.toRGB(x, style, skip=img)
return x, img
#----------------------------------------------------------------------------
@persistence.persistent_class
class MappingNet(torch.nn.Module):
def __init__(self,
z_dim, # Input latent (Z) dimensionality, 0 = no latent.
c_dim, # Conditioning label (C) dimensionality, 0 = no label.
w_dim, # Intermediate latent (W) dimensionality.
num_ws, # Number of intermediate latents to output, None = do not broadcast.
num_layers = 8, # Number of mapping layers.
embed_features = None, # Label embedding dimensionality, None = same as w_dim.
layer_features = None, # Number of intermediate features in the mapping layers, None = same as w_dim.
activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc.
lr_multiplier = 0.01, # Learning rate multiplier for the mapping layers.
w_avg_beta = 0.995, # Decay for tracking the moving average of W during training, None = do not track.
):
super().__init__()
self.z_dim = z_dim
self.c_dim = c_dim
self.w_dim = w_dim
self.num_ws = num_ws
self.num_layers = num_layers
self.w_avg_beta = w_avg_beta
if embed_features is None:
embed_features = w_dim
if c_dim == 0:
embed_features = 0
if layer_features is None:
layer_features = w_dim
features_list = [z_dim + embed_features] + [layer_features] * (num_layers - 1) + [w_dim]
if c_dim > 0:
self.embed = FullyConnectedLayer(c_dim, embed_features)
for idx in range(num_layers):
in_features = features_list[idx]
out_features = features_list[idx + 1]
layer = FullyConnectedLayer(in_features, out_features, activation=activation, lr_multiplier=lr_multiplier)
setattr(self, f'fc{idx}', layer)
if num_ws is not None and w_avg_beta is not None:
self.register_buffer('w_avg', torch.zeros([w_dim]))
def forward(self, z, c, truncation_psi=1, truncation_cutoff=None, skip_w_avg_update=False):
# Embed, normalize, and concat inputs.
x = None
with torch.autograd.profiler.record_function('input'):
if self.z_dim > 0:
x = normalize_2nd_moment(z.to(torch.float32))
if self.c_dim > 0:
y = normalize_2nd_moment(self.embed(c.to(torch.float32)))
x = torch.cat([x, y], dim=1) if x is not None else y
# Main layers.
for idx in range(self.num_layers):
layer = getattr(self, f'fc{idx}')
x = layer(x)
# Update moving average of W.
if self.w_avg_beta is not None and self.training and not skip_w_avg_update:
with torch.autograd.profiler.record_function('update_w_avg'):
self.w_avg.copy_(x.detach().mean(dim=0).lerp(self.w_avg, self.w_avg_beta))
# Broadcast.
if self.num_ws is not None:
with torch.autograd.profiler.record_function('broadcast'):
x = x.unsqueeze(1).repeat([1, self.num_ws, 1])
# Apply truncation.
if truncation_psi != 1:
with torch.autograd.profiler.record_function('truncate'):
assert self.w_avg_beta is not None
if self.num_ws is None or truncation_cutoff is None:
x = self.w_avg.lerp(x, truncation_psi)
else:
x[:, :truncation_cutoff] = self.w_avg.lerp(x[:, :truncation_cutoff], truncation_psi)
return x
#----------------------------------------------------------------------------
@persistence.persistent_class
class DisFromRGB(nn.Module):
def __init__(self, in_channels, out_channels, activation): # res = 2, ..., resolution_log2
super().__init__()
self.conv = Conv2dLayer(in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
activation=activation,
)
def forward(self, x):
return self.conv(x)
#----------------------------------------------------------------------------
@persistence.persistent_class
class DisBlock(nn.Module):
def __init__(self, in_channels, out_channels, activation): # res = 2, ..., resolution_log2
super().__init__()
self.conv0 = Conv2dLayer(in_channels=in_channels,
out_channels=in_channels,
kernel_size=3,
activation=activation,
)
self.conv1 = Conv2dLayer(in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
down=2,
activation=activation,
)
self.skip = Conv2dLayer(in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
down=2,
bias=False,
)
def forward(self, x):
skip = self.skip(x, gain=np.sqrt(0.5))
x = self.conv0(x)
x = self.conv1(x, gain=np.sqrt(0.5))
out = skip + x
return out
#----------------------------------------------------------------------------
@persistence.persistent_class
class MinibatchStdLayer(torch.nn.Module):
def __init__(self, group_size, num_channels=1):
super().__init__()
self.group_size = group_size
self.num_channels = num_channels
def forward(self, x):
N, C, H, W = x.shape
with misc.suppress_tracer_warnings(): # as_tensor results are registered as constants
G = torch.min(torch.as_tensor(self.group_size),
torch.as_tensor(N)) if self.group_size is not None else N
F = self.num_channels
c = C // F
y = x.reshape(G, -1, F, c, H,
W) # [GnFcHW] Split minibatch N into n groups of size G, and channels C into F groups of size c.
y = y - y.mean(dim=0) # [GnFcHW] Subtract mean over group.
y = y.square().mean(dim=0) # [nFcHW] Calc variance over group.
y = (y + 1e-8).sqrt() # [nFcHW] Calc stddev over group.
y = y.mean(dim=[2, 3, 4]) # [nF] Take average over channels and pixels.
y = y.reshape(-1, F, 1, 1) # [nF11] Add missing dimensions.
y = y.repeat(G, 1, H, W) # [NFHW] Replicate over group and pixels.
x = torch.cat([x, y], dim=1) # [NCHW] Append to input as new channels.
return x
#----------------------------------------------------------------------------
@persistence.persistent_class
class Discriminator(torch.nn.Module):
def __init__(self,
c_dim, # Conditioning label (C) dimensionality.
img_resolution, # Input resolution.
img_channels, # Number of input color channels.
channel_base = 32768, # Overall multiplier for the number of channels.
channel_max = 512, # Maximum number of channels in any layer.
channel_decay = 1,
cmap_dim = None, # Dimensionality of mapped conditioning label, None = default.
activation = 'lrelu',
mbstd_group_size = 4, # Group size for the minibatch standard deviation layer, None = entire minibatch.
mbstd_num_channels = 1, # Number of features for the minibatch standard deviation layer, 0 = disable.
):
super().__init__()
self.c_dim = c_dim
self.img_resolution = img_resolution
self.img_channels = img_channels
resolution_log2 = int(np.log2(img_resolution))
assert img_resolution == 2 ** resolution_log2 and img_resolution >= 4
self.resolution_log2 = resolution_log2
def nf(stage):
return np.clip(int(channel_base / 2 ** (stage * channel_decay)), 1, channel_max)
if cmap_dim == None:
cmap_dim = nf(2)
if c_dim == 0:
cmap_dim = 0
self.cmap_dim = cmap_dim
if c_dim > 0:
self.mapping = MappingNet(z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None)
Dis = [DisFromRGB(img_channels+1, nf(resolution_log2), activation)]
for res in range(resolution_log2, 2, -1):
Dis.append(DisBlock(nf(res), nf(res-1), activation))
if mbstd_num_channels > 0:
Dis.append(MinibatchStdLayer(group_size=mbstd_group_size, num_channels=mbstd_num_channels))
Dis.append(Conv2dLayer(nf(2) + mbstd_num_channels, nf(2), kernel_size=3, activation=activation))
self.Dis = nn.Sequential(*Dis)
self.fc0 = FullyConnectedLayer(nf(2)*4**2, nf(2), activation=activation)
self.fc1 = FullyConnectedLayer(nf(2), 1 if cmap_dim == 0 else cmap_dim)
def forward(self, images_in, masks_in, c):
x = torch.cat([masks_in - 0.5, images_in], dim=1)
x = self.Dis(x)
x = self.fc1(self.fc0(x.flatten(start_dim=1)))
if self.c_dim > 0:
cmap = self.mapping(None, c)
if self.cmap_dim > 0:
x = (x * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim))
return x