Spaces:
Runtime error
Runtime error
import sys | |
sys.path.insert(0, '../') | |
from collections import OrderedDict | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch_utils import misc | |
from torch_utils import persistence | |
from torch_utils.ops import conv2d_resample | |
from torch_utils.ops import upfirdn2d | |
from torch_utils.ops import bias_act | |
#---------------------------------------------------------------------------- | |
def normalize_2nd_moment(x, dim=1, eps=1e-8): | |
return x * (x.square().mean(dim=dim, keepdim=True) + eps).rsqrt() | |
#---------------------------------------------------------------------------- | |
class FullyConnectedLayer(nn.Module): | |
def __init__(self, | |
in_features, # Number of input features. | |
out_features, # Number of output features. | |
bias = True, # Apply additive bias before the activation function? | |
activation = 'linear', # Activation function: 'relu', 'lrelu', etc. | |
lr_multiplier = 1, # Learning rate multiplier. | |
bias_init = 0, # Initial value for the additive bias. | |
): | |
super().__init__() | |
self.weight = torch.nn.Parameter(torch.randn([out_features, in_features]) / lr_multiplier) | |
self.bias = torch.nn.Parameter(torch.full([out_features], np.float32(bias_init))) if bias else None | |
self.activation = activation | |
self.weight_gain = lr_multiplier / np.sqrt(in_features) | |
self.bias_gain = lr_multiplier | |
def forward(self, x): | |
w = self.weight * self.weight_gain | |
b = self.bias | |
if b is not None and self.bias_gain != 1: | |
b = b * self.bias_gain | |
if self.activation == 'linear' and b is not None: | |
# out = torch.addmm(b.unsqueeze(0), x, w.t()) | |
x = x.matmul(w.t()) | |
out = x + b.reshape([-1 if i == x.ndim-1 else 1 for i in range(x.ndim)]) | |
else: | |
x = x.matmul(w.t()) | |
out = bias_act.bias_act(x, b, act=self.activation, dim=x.ndim-1) | |
return out | |
#---------------------------------------------------------------------------- | |
class Conv2dLayer(nn.Module): | |
def __init__(self, | |
in_channels, # Number of input channels. | |
out_channels, # Number of output channels. | |
kernel_size, # Width and height of the convolution kernel. | |
bias = True, # Apply additive bias before the activation function? | |
activation = 'linear', # Activation function: 'relu', 'lrelu', etc. | |
up = 1, # Integer upsampling factor. | |
down = 1, # Integer downsampling factor. | |
resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations. | |
conv_clamp = None, # Clamp the output to +-X, None = disable clamping. | |
trainable = True, # Update the weights of this layer during training? | |
): | |
super().__init__() | |
self.activation = activation | |
self.up = up | |
self.down = down | |
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter)) | |
self.conv_clamp = conv_clamp | |
self.padding = kernel_size // 2 | |
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2)) | |
self.act_gain = bias_act.activation_funcs[activation].def_gain | |
weight = torch.randn([out_channels, in_channels, kernel_size, kernel_size]) | |
bias = torch.zeros([out_channels]) if bias else None | |
if trainable: | |
self.weight = torch.nn.Parameter(weight) | |
self.bias = torch.nn.Parameter(bias) if bias is not None else None | |
else: | |
self.register_buffer('weight', weight) | |
if bias is not None: | |
self.register_buffer('bias', bias) | |
else: | |
self.bias = None | |
def forward(self, x, gain=1): | |
w = self.weight * self.weight_gain | |
x = conv2d_resample.conv2d_resample(x=x, w=w, f=self.resample_filter, up=self.up, down=self.down, | |
padding=self.padding) | |
act_gain = self.act_gain * gain | |
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None | |
out = bias_act.bias_act(x, self.bias, act=self.activation, gain=act_gain, clamp=act_clamp) | |
return out | |
#---------------------------------------------------------------------------- | |
class ModulatedConv2d(nn.Module): | |
def __init__(self, | |
in_channels, # Number of input channels. | |
out_channels, # Number of output channels. | |
kernel_size, # Width and height of the convolution kernel. | |
style_dim, # dimension of the style code | |
demodulate=True, # perfrom demodulation | |
up=1, # Integer upsampling factor. | |
down=1, # Integer downsampling factor. | |
resample_filter=[1,3,3,1], # Low-pass filter to apply when resampling activations. | |
conv_clamp=None, # Clamp the output to +-X, None = disable clamping. | |
): | |
super().__init__() | |
self.demodulate = demodulate | |
self.weight = torch.nn.Parameter(torch.randn([1, out_channels, in_channels, kernel_size, kernel_size])) | |
self.out_channels = out_channels | |
self.kernel_size = kernel_size | |
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2)) | |
self.padding = self.kernel_size // 2 | |
self.up = up | |
self.down = down | |
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter)) | |
self.conv_clamp = conv_clamp | |
self.affine = FullyConnectedLayer(style_dim, in_channels, bias_init=1) | |
def forward(self, x, style): | |
batch, in_channels, height, width = x.shape | |
style = self.affine(style).view(batch, 1, in_channels, 1, 1) | |
weight = self.weight * self.weight_gain * style | |
if self.demodulate: | |
decoefs = (weight.pow(2).sum(dim=[2, 3, 4]) + 1e-8).rsqrt() | |
weight = weight * decoefs.view(batch, self.out_channels, 1, 1, 1) | |
weight = weight.view(batch * self.out_channels, in_channels, self.kernel_size, self.kernel_size) | |
x = x.view(1, batch * in_channels, height, width) | |
x = conv2d_resample.conv2d_resample(x=x, w=weight, f=self.resample_filter, up=self.up, down=self.down, | |
padding=self.padding, groups=batch) | |
out = x.view(batch, self.out_channels, *x.shape[2:]) | |
return out | |
#---------------------------------------------------------------------------- | |
class StyleConv(torch.nn.Module): | |
def __init__(self, | |
in_channels, # Number of input channels. | |
out_channels, # Number of output channels. | |
style_dim, # Intermediate latent (W) dimensionality. | |
resolution, # Resolution of this layer. | |
kernel_size = 3, # Convolution kernel size. | |
up = 1, # Integer upsampling factor. | |
use_noise = True, # Enable noise input? | |
activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc. | |
resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations. | |
conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping. | |
demodulate = True, # perform demodulation | |
): | |
super().__init__() | |
self.conv = ModulatedConv2d(in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
style_dim=style_dim, | |
demodulate=demodulate, | |
up=up, | |
resample_filter=resample_filter, | |
conv_clamp=conv_clamp) | |
self.use_noise = use_noise | |
self.resolution = resolution | |
if use_noise: | |
self.register_buffer('noise_const', torch.randn([resolution, resolution])) | |
self.noise_strength = torch.nn.Parameter(torch.zeros([])) | |
self.bias = torch.nn.Parameter(torch.zeros([out_channels])) | |
self.activation = activation | |
self.act_gain = bias_act.activation_funcs[activation].def_gain | |
self.conv_clamp = conv_clamp | |
def forward(self, x, style, noise_mode='random', gain=1): | |
x = self.conv(x, style) | |
assert noise_mode in ['random', 'const', 'none'] | |
if self.use_noise: | |
if noise_mode == 'random': | |
xh, xw = x.size()[-2:] | |
noise = torch.randn([x.shape[0], 1, xh, xw], device=x.device) \ | |
* self.noise_strength | |
if noise_mode == 'const': | |
noise = self.noise_const * self.noise_strength | |
x = x + noise | |
act_gain = self.act_gain * gain | |
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None | |
out = bias_act.bias_act(x, self.bias, act=self.activation, gain=act_gain, clamp=act_clamp) | |
return out | |
#---------------------------------------------------------------------------- | |
class ToRGB(torch.nn.Module): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
style_dim, | |
kernel_size=1, | |
resample_filter=[1,3,3,1], | |
conv_clamp=None, | |
demodulate=False): | |
super().__init__() | |
self.conv = ModulatedConv2d(in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
style_dim=style_dim, | |
demodulate=demodulate, | |
resample_filter=resample_filter, | |
conv_clamp=conv_clamp) | |
self.bias = torch.nn.Parameter(torch.zeros([out_channels])) | |
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter)) | |
self.conv_clamp = conv_clamp | |
def forward(self, x, style, skip=None): | |
x = self.conv(x, style) | |
out = bias_act.bias_act(x, self.bias, clamp=self.conv_clamp) | |
if skip is not None: | |
if skip.shape != out.shape: | |
skip = upfirdn2d.upsample2d(skip, self.resample_filter) | |
out = out + skip | |
return out | |
#---------------------------------------------------------------------------- | |
def get_style_code(a, b): | |
return torch.cat([a, b], dim=1) | |
#---------------------------------------------------------------------------- | |
class DecBlockFirst(nn.Module): | |
def __init__(self, in_channels, out_channels, activation, style_dim, use_noise, demodulate, img_channels): | |
super().__init__() | |
self.fc = FullyConnectedLayer(in_features=in_channels*2, | |
out_features=in_channels*4**2, | |
activation=activation) | |
self.conv = StyleConv(in_channels=in_channels, | |
out_channels=out_channels, | |
style_dim=style_dim, | |
resolution=4, | |
kernel_size=3, | |
use_noise=use_noise, | |
activation=activation, | |
demodulate=demodulate, | |
) | |
self.toRGB = ToRGB(in_channels=out_channels, | |
out_channels=img_channels, | |
style_dim=style_dim, | |
kernel_size=1, | |
demodulate=False, | |
) | |
def forward(self, x, ws, gs, E_features, noise_mode='random'): | |
x = self.fc(x).view(x.shape[0], -1, 4, 4) | |
x = x + E_features[2] | |
style = get_style_code(ws[:, 0], gs) | |
x = self.conv(x, style, noise_mode=noise_mode) | |
style = get_style_code(ws[:, 1], gs) | |
img = self.toRGB(x, style, skip=None) | |
return x, img | |
class DecBlockFirstV2(nn.Module): | |
def __init__(self, in_channels, out_channels, activation, style_dim, use_noise, demodulate, img_channels): | |
super().__init__() | |
self.conv0 = Conv2dLayer(in_channels=in_channels, | |
out_channels=in_channels, | |
kernel_size=3, | |
activation=activation, | |
) | |
self.conv1 = StyleConv(in_channels=in_channels, | |
out_channels=out_channels, | |
style_dim=style_dim, | |
resolution=4, | |
kernel_size=3, | |
use_noise=use_noise, | |
activation=activation, | |
demodulate=demodulate, | |
) | |
self.toRGB = ToRGB(in_channels=out_channels, | |
out_channels=img_channels, | |
style_dim=style_dim, | |
kernel_size=1, | |
demodulate=False, | |
) | |
def forward(self, x, ws, gs, E_features, noise_mode='random'): | |
# x = self.fc(x).view(x.shape[0], -1, 4, 4) | |
x = self.conv0(x) | |
x = x + E_features[2] | |
style = get_style_code(ws[:, 0], gs) | |
x = self.conv1(x, style, noise_mode=noise_mode) | |
style = get_style_code(ws[:, 1], gs) | |
img = self.toRGB(x, style, skip=None) | |
return x, img | |
#---------------------------------------------------------------------------- | |
class DecBlock(nn.Module): | |
def __init__(self, res, in_channels, out_channels, activation, style_dim, use_noise, demodulate, img_channels): # res = 2, ..., resolution_log2 | |
super().__init__() | |
self.res = res | |
self.conv0 = StyleConv(in_channels=in_channels, | |
out_channels=out_channels, | |
style_dim=style_dim, | |
resolution=2**res, | |
kernel_size=3, | |
up=2, | |
use_noise=use_noise, | |
activation=activation, | |
demodulate=demodulate, | |
) | |
self.conv1 = StyleConv(in_channels=out_channels, | |
out_channels=out_channels, | |
style_dim=style_dim, | |
resolution=2**res, | |
kernel_size=3, | |
use_noise=use_noise, | |
activation=activation, | |
demodulate=demodulate, | |
) | |
self.toRGB = ToRGB(in_channels=out_channels, | |
out_channels=img_channels, | |
style_dim=style_dim, | |
kernel_size=1, | |
demodulate=False, | |
) | |
def forward(self, x, img, ws, gs, E_features, noise_mode='random'): | |
style = get_style_code(ws[:, self.res * 2 - 5], gs) | |
x = self.conv0(x, style, noise_mode=noise_mode) | |
x = x + E_features[self.res] | |
style = get_style_code(ws[:, self.res * 2 - 4], gs) | |
x = self.conv1(x, style, noise_mode=noise_mode) | |
style = get_style_code(ws[:, self.res * 2 - 3], gs) | |
img = self.toRGB(x, style, skip=img) | |
return x, img | |
#---------------------------------------------------------------------------- | |
class MappingNet(torch.nn.Module): | |
def __init__(self, | |
z_dim, # Input latent (Z) dimensionality, 0 = no latent. | |
c_dim, # Conditioning label (C) dimensionality, 0 = no label. | |
w_dim, # Intermediate latent (W) dimensionality. | |
num_ws, # Number of intermediate latents to output, None = do not broadcast. | |
num_layers = 8, # Number of mapping layers. | |
embed_features = None, # Label embedding dimensionality, None = same as w_dim. | |
layer_features = None, # Number of intermediate features in the mapping layers, None = same as w_dim. | |
activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc. | |
lr_multiplier = 0.01, # Learning rate multiplier for the mapping layers. | |
w_avg_beta = 0.995, # Decay for tracking the moving average of W during training, None = do not track. | |
): | |
super().__init__() | |
self.z_dim = z_dim | |
self.c_dim = c_dim | |
self.w_dim = w_dim | |
self.num_ws = num_ws | |
self.num_layers = num_layers | |
self.w_avg_beta = w_avg_beta | |
if embed_features is None: | |
embed_features = w_dim | |
if c_dim == 0: | |
embed_features = 0 | |
if layer_features is None: | |
layer_features = w_dim | |
features_list = [z_dim + embed_features] + [layer_features] * (num_layers - 1) + [w_dim] | |
if c_dim > 0: | |
self.embed = FullyConnectedLayer(c_dim, embed_features) | |
for idx in range(num_layers): | |
in_features = features_list[idx] | |
out_features = features_list[idx + 1] | |
layer = FullyConnectedLayer(in_features, out_features, activation=activation, lr_multiplier=lr_multiplier) | |
setattr(self, f'fc{idx}', layer) | |
if num_ws is not None and w_avg_beta is not None: | |
self.register_buffer('w_avg', torch.zeros([w_dim])) | |
def forward(self, z, c, truncation_psi=1, truncation_cutoff=None, skip_w_avg_update=False): | |
# Embed, normalize, and concat inputs. | |
x = None | |
with torch.autograd.profiler.record_function('input'): | |
if self.z_dim > 0: | |
x = normalize_2nd_moment(z.to(torch.float32)) | |
if self.c_dim > 0: | |
y = normalize_2nd_moment(self.embed(c.to(torch.float32))) | |
x = torch.cat([x, y], dim=1) if x is not None else y | |
# Main layers. | |
for idx in range(self.num_layers): | |
layer = getattr(self, f'fc{idx}') | |
x = layer(x) | |
# Update moving average of W. | |
if self.w_avg_beta is not None and self.training and not skip_w_avg_update: | |
with torch.autograd.profiler.record_function('update_w_avg'): | |
self.w_avg.copy_(x.detach().mean(dim=0).lerp(self.w_avg, self.w_avg_beta)) | |
# Broadcast. | |
if self.num_ws is not None: | |
with torch.autograd.profiler.record_function('broadcast'): | |
x = x.unsqueeze(1).repeat([1, self.num_ws, 1]) | |
# Apply truncation. | |
if truncation_psi != 1: | |
with torch.autograd.profiler.record_function('truncate'): | |
assert self.w_avg_beta is not None | |
if self.num_ws is None or truncation_cutoff is None: | |
x = self.w_avg.lerp(x, truncation_psi) | |
else: | |
x[:, :truncation_cutoff] = self.w_avg.lerp(x[:, :truncation_cutoff], truncation_psi) | |
return x | |
#---------------------------------------------------------------------------- | |
class DisFromRGB(nn.Module): | |
def __init__(self, in_channels, out_channels, activation): # res = 2, ..., resolution_log2 | |
super().__init__() | |
self.conv = Conv2dLayer(in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=1, | |
activation=activation, | |
) | |
def forward(self, x): | |
return self.conv(x) | |
#---------------------------------------------------------------------------- | |
class DisBlock(nn.Module): | |
def __init__(self, in_channels, out_channels, activation): # res = 2, ..., resolution_log2 | |
super().__init__() | |
self.conv0 = Conv2dLayer(in_channels=in_channels, | |
out_channels=in_channels, | |
kernel_size=3, | |
activation=activation, | |
) | |
self.conv1 = Conv2dLayer(in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=3, | |
down=2, | |
activation=activation, | |
) | |
self.skip = Conv2dLayer(in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=1, | |
down=2, | |
bias=False, | |
) | |
def forward(self, x): | |
skip = self.skip(x, gain=np.sqrt(0.5)) | |
x = self.conv0(x) | |
x = self.conv1(x, gain=np.sqrt(0.5)) | |
out = skip + x | |
return out | |
#---------------------------------------------------------------------------- | |
class MinibatchStdLayer(torch.nn.Module): | |
def __init__(self, group_size, num_channels=1): | |
super().__init__() | |
self.group_size = group_size | |
self.num_channels = num_channels | |
def forward(self, x): | |
N, C, H, W = x.shape | |
with misc.suppress_tracer_warnings(): # as_tensor results are registered as constants | |
G = torch.min(torch.as_tensor(self.group_size), | |
torch.as_tensor(N)) if self.group_size is not None else N | |
F = self.num_channels | |
c = C // F | |
y = x.reshape(G, -1, F, c, H, | |
W) # [GnFcHW] Split minibatch N into n groups of size G, and channels C into F groups of size c. | |
y = y - y.mean(dim=0) # [GnFcHW] Subtract mean over group. | |
y = y.square().mean(dim=0) # [nFcHW] Calc variance over group. | |
y = (y + 1e-8).sqrt() # [nFcHW] Calc stddev over group. | |
y = y.mean(dim=[2, 3, 4]) # [nF] Take average over channels and pixels. | |
y = y.reshape(-1, F, 1, 1) # [nF11] Add missing dimensions. | |
y = y.repeat(G, 1, H, W) # [NFHW] Replicate over group and pixels. | |
x = torch.cat([x, y], dim=1) # [NCHW] Append to input as new channels. | |
return x | |
#---------------------------------------------------------------------------- | |
class Discriminator(torch.nn.Module): | |
def __init__(self, | |
c_dim, # Conditioning label (C) dimensionality. | |
img_resolution, # Input resolution. | |
img_channels, # Number of input color channels. | |
channel_base = 32768, # Overall multiplier for the number of channels. | |
channel_max = 512, # Maximum number of channels in any layer. | |
channel_decay = 1, | |
cmap_dim = None, # Dimensionality of mapped conditioning label, None = default. | |
activation = 'lrelu', | |
mbstd_group_size = 4, # Group size for the minibatch standard deviation layer, None = entire minibatch. | |
mbstd_num_channels = 1, # Number of features for the minibatch standard deviation layer, 0 = disable. | |
): | |
super().__init__() | |
self.c_dim = c_dim | |
self.img_resolution = img_resolution | |
self.img_channels = img_channels | |
resolution_log2 = int(np.log2(img_resolution)) | |
assert img_resolution == 2 ** resolution_log2 and img_resolution >= 4 | |
self.resolution_log2 = resolution_log2 | |
def nf(stage): | |
return np.clip(int(channel_base / 2 ** (stage * channel_decay)), 1, channel_max) | |
if cmap_dim == None: | |
cmap_dim = nf(2) | |
if c_dim == 0: | |
cmap_dim = 0 | |
self.cmap_dim = cmap_dim | |
if c_dim > 0: | |
self.mapping = MappingNet(z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None) | |
Dis = [DisFromRGB(img_channels+1, nf(resolution_log2), activation)] | |
for res in range(resolution_log2, 2, -1): | |
Dis.append(DisBlock(nf(res), nf(res-1), activation)) | |
if mbstd_num_channels > 0: | |
Dis.append(MinibatchStdLayer(group_size=mbstd_group_size, num_channels=mbstd_num_channels)) | |
Dis.append(Conv2dLayer(nf(2) + mbstd_num_channels, nf(2), kernel_size=3, activation=activation)) | |
self.Dis = nn.Sequential(*Dis) | |
self.fc0 = FullyConnectedLayer(nf(2)*4**2, nf(2), activation=activation) | |
self.fc1 = FullyConnectedLayer(nf(2), 1 if cmap_dim == 0 else cmap_dim) | |
def forward(self, images_in, masks_in, c): | |
x = torch.cat([masks_in - 0.5, images_in], dim=1) | |
x = self.Dis(x) | |
x = self.fc1(self.fc0(x.flatten(start_dim=1))) | |
if self.c_dim > 0: | |
cmap = self.mapping(None, c) | |
if self.cmap_dim > 0: | |
x = (x * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim)) | |
return x | |