Spaces:
Runtime error
Runtime error
# %% | |
# an example script of how to do outpainting with diffusers img2img pipeline | |
# should be compatible with any stable diffusion model | |
# (only tested with runwayml/stable-diffusion-v1-5) | |
from typing import Callable, List, Optional, Union | |
from PIL import Image | |
import PIL | |
import numpy as np | |
import torch | |
from diffusers import StableDiffusionImg2ImgPipeline | |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import preprocess | |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", | |
revision="fp16", | |
torch_dtype=torch.float16, | |
) | |
pipe.set_use_memory_efficient_attention_xformers(True) | |
pipe.to("cuda") | |
# %% | |
# load the image, extract the mask | |
rgba = Image.open('primed_image_with_alpha_channel.png') | |
mask_full = np.array(rgba)[:, :, 3] == 0 | |
rgb = rgba.convert('RGB') | |
# %% | |
# resize/convert the mask to the right size | |
# for 512x512, the mask should be 1x4x64x64 | |
hw = np.array(mask_full.shape) | |
h, w = (hw - hw % 32) // 8 | |
mask_image = Image.fromarray(mask_full).resize((w, h), Image.NEAREST) | |
mask = (np.array(mask_image) == 0)[None, None] | |
mask = np.concatenate([mask]*4, axis=1) | |
mask = torch.from_numpy(mask).to('cuda') | |
mask.shape | |
# %% | |
def outpaint( | |
self: StableDiffusionImg2ImgPipeline, | |
prompt: Union[str, List[str]] = None, | |
image: Union[torch.FloatTensor, PIL.Image.Image] = None, | |
strength: float = 0.8, | |
num_inference_steps: Optional[int] = 50, | |
guidance_scale: Optional[float] = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: Optional[float] = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: Optional[int] = 1, | |
**kwargs, | |
): | |
r""" | |
copy of the original img2img pipeline's __call__() | |
https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py | |
Changes are marked with <EDIT> and </EDIT> | |
""" | |
# message = "Please use `image` instead of `init_image`." | |
# init_image = deprecate("init_image", "0.14.0", message, take_from=kwargs) | |
# image = init_image or image | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs(prompt, strength, callback_steps, | |
negative_prompt, prompt_embeds, negative_prompt_embeds) | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
prompt_embeds = self._encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
) | |
# 4. Preprocess image | |
image = preprocess(image) | |
# 5. set timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps, num_inference_steps = self.get_timesteps( | |
num_inference_steps, strength, device) | |
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
# 6. Prepare latent variables | |
latents = self.prepare_latents( | |
image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator | |
) | |
# <EDIT> | |
# store the encoded version of the original image to overwrite | |
# what the UNET generates "underneath" our image on each step | |
encoded_original = (self.vae.config.scaling_factor * | |
self.vae.encode( | |
image.to(latents.device, latents.dtype) | |
).latent_dist.mean) | |
# </EDIT> | |
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 8. Denoising loop | |
num_warmup_steps = len(timesteps) - \ | |
num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat( | |
[latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input( | |
latent_model_input, t) | |
# predict the noise residual | |
noise_pred = self.unet(latent_model_input, t, | |
encoder_hidden_states=prompt_embeds).sample | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * \ | |
(noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step( | |
noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
# <EDIT> paste unmasked regions from the original image | |
noise = torch.randn( | |
encoded_original.shape, generator=generator, device=device) | |
noised_encoded_original = self.scheduler.add_noise( | |
encoded_original, noise, t).to(noise_pred.device, noise_pred.dtype) | |
latents[mask] = noised_encoded_original[mask] | |
# </EDIT> | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
# 9. Post-processing | |
image = self.decode_latents(latents) | |
# 10. Run safety checker | |
image, has_nsfw_concept = self.run_safety_checker( | |
image, device, prompt_embeds.dtype) | |
# 11. Convert to PIL | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |
# %% | |
image = outpaint( | |
pipe, | |
image=rgb, | |
prompt="forest in the style of Tim Hildebrandt", | |
strength=0.5, | |
num_inference_steps=50, | |
guidance_scale=7.5, | |
).images[0] | |
image | |
# %% | |
# the vae does lossy encoding, we could get better quality if we pasted the original image into our result. | |
# this may yield visible edges | |