Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from losses.vggNet import VGGFeatureExtractor | |
import numpy as np | |
class PerceptualLoss(nn.Module): | |
"""Perceptual loss with commonly used style loss. | |
Args: | |
layer_weights (dict): The weight for each layer of vgg feature. | |
Here is an example: {'conv5_4': 1.}, which means the conv5_4 | |
feature layer (before relu5_4) will be extracted with weight | |
1.0 in calculting losses. | |
vgg_type (str): The type of vgg network used as feature extractor. | |
Default: 'vgg19'. | |
use_input_norm (bool): If True, normalize the input image in vgg. | |
Default: True. | |
perceptual_weight (float): If `perceptual_weight > 0`, the perceptual | |
loss will be calculated and the loss will multiplied by the | |
weight. Default: 1.0. | |
style_weight (float): If `style_weight > 0`, the style loss will be | |
calculated and the loss will multiplied by the weight. | |
Default: 0. | |
norm_img (bool): If True, the image will be normed to [0, 1]. Note that | |
this is different from the `use_input_norm` which norm the input in | |
in forward function of vgg according to the statistics of dataset. | |
Importantly, the input image must be in range [-1, 1]. | |
Default: False. | |
criterion (str): Criterion used for perceptual loss. Default: 'l1'. | |
""" | |
def __init__(self, | |
layer_weights, | |
vgg_type='vgg19', | |
use_input_norm=True, | |
use_pcp_loss=True, | |
use_style_loss=False, | |
norm_img=True, | |
criterion='l1'): | |
super(PerceptualLoss, self).__init__() | |
self.norm_img = norm_img | |
self.use_pcp_loss = use_pcp_loss | |
self.use_style_loss = use_style_loss | |
self.layer_weights = layer_weights | |
self.vgg = VGGFeatureExtractor( | |
layer_name_list=list(layer_weights.keys()), | |
vgg_type=vgg_type, | |
use_input_norm=use_input_norm) | |
self.criterion_type = criterion | |
if self.criterion_type == 'l1': | |
self.criterion = torch.nn.L1Loss() | |
elif self.criterion_type == 'l2': | |
self.criterion = torch.nn.L2loss() | |
elif self.criterion_type == 'fro': | |
self.criterion = None | |
else: | |
raise NotImplementedError('%s criterion has not been supported.' % self.criterion_type) | |
def forward(self, x, gt): | |
"""Forward function. | |
Args: | |
x (Tensor): Input tensor with shape (n, c, h, w). | |
gt (Tensor): Ground-truth tensor with shape (n, c, h, w). | |
Returns: | |
Tensor: Forward results. | |
""" | |
if self.norm_img: | |
x = (x + 1.) * 0.5 | |
gt = (gt + 1.) * 0.5 | |
# extract vgg features | |
x_features = self.vgg(x) | |
gt_features = self.vgg(gt.detach()) | |
# calculate perceptual loss | |
if self.use_pcp_loss: | |
percep_loss = 0 | |
for k in x_features.keys(): | |
if self.criterion_type == 'fro': | |
percep_loss += torch.norm( | |
x_features[k] - gt_features[k], | |
p='fro') * self.layer_weights[k] | |
else: | |
percep_loss += self.criterion(x_features[k], gt_features[k]) * self.layer_weights[k] | |
else: | |
percep_loss = None | |
# calculate style loss | |
if self.use_style_loss: | |
style_loss = 0 | |
for k in x_features.keys(): | |
if self.criterion_type == 'fro': | |
style_loss += torch.norm( | |
self._gram_mat(x_features[k]) - | |
self._gram_mat(gt_features[k]), | |
p='fro') * self.layer_weights[k] | |
else: | |
style_loss += self.criterion(self._gram_mat(x_features[k]), self._gram_mat(gt_features[k])) \ | |
* self.layer_weights[k] | |
else: | |
style_loss = None | |
return percep_loss, style_loss | |
def _gram_mat(self, x): | |
"""Calculate Gram matrix. | |
Args: | |
x (torch.Tensor): Tensor with shape of (n, c, h, w). | |
Returns: | |
torch.Tensor: Gram matrix. | |
""" | |
n, c, h, w = x.size() | |
features = x.view(n, c, w * h) | |
features_t = features.transpose(1, 2) | |
gram = features.bmm(features_t) / (c * h * w) | |
return gram | |