max commited on
Commit
3746f14
·
1 Parent(s): 89023a7

added tiled option

Browse files
Files changed (1) hide show
  1. app.py +84 -10
app.py CHANGED
@@ -283,21 +283,94 @@ class Predictor:
283
  minpainted = mask_to_alpha(inpainted, m)
284
  return inpainted, minpainted, ImageOps.invert(m)
285
 
 
 
 
 
 
 
 
 
 
286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
287
  predictor = Predictor()
288
 
289
  # %%
290
 
291
 
292
- def _outpaint(img, tosize, border, seed, size, model):
293
- img_op = predictor.predict(
294
- img,
295
- border=border,
296
- seed=seed,
297
- tosize=(tosize, tosize),
298
- size=float(size),
299
- model=model,
300
- )
 
 
 
 
 
 
 
 
 
 
301
  return img_op
302
  # %%
303
 
@@ -330,6 +403,7 @@ with gr.Blocks() as demo:
330
  border = gc.Slider(1, 50, 0, step=1, label='border to crop from the image before outpainting')
331
  seed = gc.Slider(1, 65536, 10, step=1, label='seed')
332
  size = gc.Slider(0, 1, .5, step=0.01,label='scale of the image before outpainting')
 
333
 
334
  model = gc.Dropdown(
335
  choices=['places2',
@@ -346,7 +420,7 @@ with gr.Blocks() as demo:
346
 
347
  btn.click(
348
  fn=_outpaint,
349
- inputs=[searchimage, to_size, border, seed, size, model],
350
  outputs=[outwithoutalpha, out, mask])
351
 
352
 
 
283
  minpainted = mask_to_alpha(inpainted, m)
284
  return inpainted, minpainted, ImageOps.invert(m)
285
 
286
+ def predict_tiled(
287
+ self,
288
+ img: Image.Image,
289
+ tosize=(512, 512),
290
+ border=5,
291
+ seed=42,
292
+ size=0.5,
293
+ model='places2',
294
+ ) -> Image:
295
 
296
+ i, morig = pad(
297
+ img,
298
+ size=size, # (328, 328),
299
+ tosize=tosize,
300
+ border=border
301
+ )
302
+ i.putalpha(morig)
303
+ img = i
304
+ img.save('0.png')
305
+ assert img.width == img.height
306
+ assert img.width > 512 and img.width < 512*2
307
+
308
+ def tile_coords(image, n=2, tile_size=512):
309
+ assert image.width == image.height
310
+ offsets = np.linspace(0, image.width - tile_size, n).astype(int)
311
+ for i in range(n):
312
+ for j in range(n):
313
+ left = offsets[j]
314
+ upper = offsets[i]
315
+ right = left + tile_size
316
+ lower = upper + tile_size
317
+ # tile = image.crop((left, upper, right, lower))
318
+ yield [left, upper, right, lower]
319
+
320
+ for ix, tc in enumerate(tile_coords(img, n=2)):
321
+ i = img.crop(tc)
322
+ i.save(f't{ix}.png')
323
+ m = i.getchannel('A')
324
+
325
+ """Run a single prediction on the model"""
326
+ imgs = self.models[model].generate_images2(
327
+ dpath=[i.resize((512, 512), resample=Image.Resampling.NEAREST)],
328
+ mpath=[m.resize((512, 512), resample=Image.Resampling.NEAREST)],
329
+ seed=seed,
330
+ )
331
+ img_op_raw = imgs[0].convert('RGBA')
332
+ # img_op_raw = img_op_raw.resize(tosize, resample=Image.Resampling.NEAREST)
333
+ inpainted = img_op_raw.copy()
334
+
335
+ # paste original image to remove inpainting/scaling artifacts
336
+ inpainted = blend(
337
+ i,
338
+ inpainted,
339
+ 1-(np.array(m) / 255)
340
+ )
341
+ inpainted.save(f't{ix}_op.png')
342
+ minpainted = mask_to_alpha(inpainted, m)
343
+ # continue with partially inpainted image
344
+ # since the tiles overlap, the next tile will contain (possibly inpainted) parts of the previous tile
345
+ img.paste(inpainted, tc)
346
+
347
+ # restore original alpha channel
348
+ img.putalpha(morig)
349
+ return img.convert('RGB'), img, ImageOps.invert(img.getchannel('A'))
350
  predictor = Predictor()
351
 
352
  # %%
353
 
354
 
355
+ def _outpaint(img, tosize, border, seed, size, model, tiled):
356
+ if tiled:
357
+ img_op = predictor.predict_tiled(
358
+ img,
359
+ border=border,
360
+ seed=seed,
361
+ tosize=(tosize, tosize),
362
+ size=float(size),
363
+ model=model,
364
+ )
365
+ else:
366
+ img_op = predictor.predict(
367
+ img,
368
+ border=border,
369
+ seed=seed,
370
+ tosize=(tosize, tosize),
371
+ size=float(size),
372
+ model=model,
373
+ )
374
  return img_op
375
  # %%
376
 
 
403
  border = gc.Slider(1, 50, 0, step=1, label='border to crop from the image before outpainting')
404
  seed = gc.Slider(1, 65536, 10, step=1, label='seed')
405
  size = gc.Slider(0, 1, .5, step=0.01,label='scale of the image before outpainting')
406
+ tiled = gc.Checkbox(label='tiled: run the network with 4 tiles of size 512x512 . only usable if output size >512 and <1024', value=False)
407
 
408
  model = gc.Dropdown(
409
  choices=['places2',
 
420
 
421
  btn.click(
422
  fn=_outpaint,
423
+ inputs=[searchimage, to_size, border, seed, size, model,tiled],
424
  outputs=[outwithoutalpha, out, mask])
425
 
426