# %%
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from networks.mat import Generator
import gradio as gr
import gradio.components as gc
import base64
import glob
import os
import random
import re
from http import HTTPStatus
from io import BytesIO
from typing import Dict, List, NamedTuple, Optional, Tuple
import click
import cv2
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
from PIL import Image, ImageDraw, ImageOps
from pydantic import BaseModel
import dnnlib
import legacy
pyspng = None
def num_range(s: str) -> List[int]:
'''Accept either a comma separated list of numbers 'a,b,c' or a range 'a-c' and return as a list of ints.'''
range_re = re.compile(r'^(\d+)-(\d+)$')
m = range_re.match(s)
if m:
return list(range(int(m.group(1)), int(m.group(2))+1))
vals = s.split(',')
return [int(x) for x in vals]
def copy_params_and_buffers(src_module, dst_module, require_all=False):
assert isinstance(src_module, torch.nn.Module)
assert isinstance(dst_module, torch.nn.Module)
src_tensors = {name: tensor for name,
tensor in named_params_and_buffers(src_module)}
for name, tensor in named_params_and_buffers(dst_module):
assert (name in src_tensors) or (not require_all)
if name in src_tensors:
tensor.copy_(src_tensors[name].detach()).requires_grad_(
tensor.requires_grad)
def params_and_buffers(module):
assert isinstance(module, torch.nn.Module)
return list(module.parameters()) + list(module.buffers())
def named_params_and_buffers(module):
assert isinstance(module, torch.nn.Module)
return list(module.named_parameters()) + list(module.named_buffers())
class Inpainter:
def __init__(self,
network_pkl,
resolution=512,
truncation_psi=1,
noise_mode='const',
sdevice='cpu'
):
self.resolution = resolution
self.truncation_psi = truncation_psi
self.noise_mode = noise_mode
print(f'Loading networks from: {network_pkl}')
self.device = torch.device(sdevice)
with dnnlib.util.open_url(network_pkl) as f:
G_saved = (
legacy.load_network_pkl(f)
['G_ema']
.to(self.device)
.eval()
.requires_grad_(False)) # type: ignore
net_res = 512 if resolution > 512 else resolution
self.G = (
Generator(
z_dim=512,
c_dim=0,
w_dim=512,
img_resolution=net_res,
img_channels=3
)
.to(self.device)
.eval()
.requires_grad_(False)
)
copy_params_and_buffers(G_saved, self.G, require_all=True)
def generate_images2(
self,
dpath: List[PIL.Image.Image],
mpath: List[Optional[PIL.Image.Image]],
seed: int = 42,
):
"""
Generate images using pretrained network pickle.
"""
resolution = self.resolution
truncation_psi = self.truncation_psi
noise_mode = self.noise_mode
# seed = 240 # pick up a random number
def seed_all(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
if seed is not None:
seed_all(seed)
# no Labels.
label = torch.zeros([1, self.G.c_dim], device=self.device)
def read_image(image):
image = np.array(image)
if image.ndim == 2:
image = image[:, :, np.newaxis] # HW => HWC
image = np.repeat(image, 3, axis=2)
image = image.transpose(2, 0, 1) # HWC => CHW
image = image[:3]
return image
if resolution != 512:
noise_mode = 'random'
results = []
with torch.no_grad():
for i, (ipath, m) in enumerate(zip(dpath, mpath)):
if seed is None:
seed_all(i)
image = read_image(ipath)
image = (torch.from_numpy(image).float().to(
self. device) / 127.5 - 1).unsqueeze(0)
mask = np.array(m).astype(np.float32) / 255.0
mask = torch.from_numpy(mask).float().to(
self. device).unsqueeze(0).unsqueeze(0)
z = torch.from_numpy(np.random.randn(
1, self.G.z_dim)).to(self.device)
output = self.G(image, mask, z, label,
truncation_psi=truncation_psi, noise_mode=noise_mode)
output = (output.permute(0, 2, 3, 1) * 127.5 +
127.5).round().clamp(0, 255).to(torch.uint8)
output = output[0].cpu().numpy()
results.append(PIL.Image.fromarray(output, 'RGB'))
return results
# if __name__ == "__main__":
# generate_images() # pylint: disable=no-value-for-parameter
# ----------------------------------------------------------------------------
def mask_to_alpha(img, mask):
img = img.copy()
img.putalpha(mask)
return img
def blend(src, target, mask):
mask = np.expand_dims(mask, axis=-1)
result = (1-mask) * src + mask * target
return Image.fromarray(result.astype(np.uint8))
def pad(img, size=(128, 128), tosize=(512, 512), border=1):
if isinstance(size, float):
size = (int(img.size[0] * size), int(img.size[1] * size))
# remove border
w, h = tosize
new_img = Image.new('RGBA', (w, h))
rimg = img.resize(size, resample=Image.Resampling.NEAREST)
rimg = ImageOps.crop(rimg, border=border)
tw, th = size
tw, th = tw - border*2, th - border*2
tc = ((w-tw)//2, (h-th)//2)
new_img.paste(rimg, tc)
mask = Image.new('L', (w, h))
white = Image.new('L', (tw, th), 255)
mask.paste(white, tc)
if 'A' in rimg.getbands():
mask.paste(img.getchannel('A'), tc)
return new_img, mask
def b64_to_img(b64):
return Image.open(BytesIO(base64.b64decode(b64)))
def img_to_b64(img):
with BytesIO() as f:
img.save(f, format='PNG')
return base64.b64encode(f.getvalue()).decode('utf-8')
class Predictor:
def __init__(self):
"""Load the model into memory to make running multiple predictions efficient"""
self.models = {
"places2": Inpainter(
network_pkl='models/Places_512_FullData.pkl',
resolution=512,
truncation_psi=1.,
noise_mode='const',
),
"places2+laion300k": Inpainter(
network_pkl='models/Places_512_FullData+LAION300k.pkl',
resolution=512,
truncation_psi=1.,
noise_mode='const',
),
"places2+laion300k+laion300k(opmasked)": Inpainter(
network_pkl='models/Places_512_FullData+LAION300k+OPM300k.pkl',
resolution=512,
truncation_psi=1.,
noise_mode='const',
),
}
# The arguments and types the model takes as input
def predict(
self,
img: Image.Image,
tosize=(512, 512),
border=5,
seed=42,
size=0.5,
model='places2',
) -> Image:
i, m = pad(
img,
size=size, # (328, 328),
tosize=tosize,
border=border
)
"""Run a single prediction on the model"""
imgs = self.models[model].generate_images2(
dpath=[i.resize((512, 512), resample=Image.Resampling.NEAREST)],
mpath=[m.resize((512, 512), resample=Image.Resampling.NEAREST)],
seed=seed,
)
img_op_raw = imgs[0].convert('RGBA')
img_op_raw = img_op_raw.resize(
tosize, resample=Image.Resampling.NEAREST)
inpainted = img_op_raw.copy()
# paste original image to remove inpainting/scaling artifacts
inpainted = blend(
i,
inpainted,
1-(np.array(m) / 255)
)
minpainted = mask_to_alpha(inpainted, m)
return minpainted, inpainted, ImageOps.invert(m)
predictor = Predictor()
# %%
def _outpaint(img, tosize, border, seed, size, model):
img_op = predictor.predict(
img,
border=border,
seed=seed,
tosize=(tosize, tosize),
size=float(size),
model=model,
)
return img_op
# %%
searchimage = gc.Image(shape=(224, 224), label="image", type='pil')
to_size = gc.Slider(1, 1920, 512, step=1, label='output size')
border = gc.Slider(
1, 50, 0, step=1, label='border to crop from the image before outpainting')
seed = gc.Slider(1, 65536, 10, step=1, label='seed')
size = gc.Slider(0, 1, .5, step=0.01,
label='scale of the image before outpainting')
out = gc.Image(label="primed image with alpha channel", type='pil')
outwithoutalpha = gc.Image(
label="primed image without alpha channel", type='pil')
mask = gc.Image(label="outpainting mask", type='pil')
model = gc.Dropdown(
choices=['places2', 'places2+laion300k', 'places2+laion300k+laion300k(opmasked)'],
value='places2+laion300k+laion300k(opmasked)',
label='model',
)
maturl = 'https://github.com/fenglinglwb/MAT'
gr.Interface(
_outpaint,
[searchimage, to_size, border, seed, size, model],
[out, outwithoutalpha, mask],
title=f"MAT Primer for Stable Diffusion\n\nbased on MAT: Mask-Aware Transformer for Large Hole Image Inpainting\n\n{maturl}",
description=f"""
create an primer for use in stable diffusion outpainting
example with strength 0.5
""",
analytics_enabled=False,
allow_flagging='never',
).launch()