Spaces:
Runtime error
Runtime error
Royrotem100
commited on
Commit
โข
123f4c7
1
Parent(s):
4c9d398
Add DictaLM 2.0 instruct model 6
Browse files
app.py
CHANGED
@@ -1,20 +1,25 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
from http import HTTPStatus
|
4 |
-
import openai
|
5 |
from typing import Generator, List, Optional, Tuple, Dict
|
|
|
6 |
from urllib.error import HTTPError
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
|
13 |
History = List[Tuple[str, str]]
|
14 |
Messages = List[Dict[str, str]]
|
15 |
|
16 |
def clear_session() -> History:
|
17 |
-
return
|
18 |
|
19 |
def history_to_messages(history: History) -> Messages:
|
20 |
messages = []
|
@@ -23,12 +28,51 @@ def history_to_messages(history: History) -> Messages:
|
|
23 |
messages.append({'role': 'assistant', 'content': h[1].strip()})
|
24 |
return messages
|
25 |
|
26 |
-
def messages_to_history(messages: Messages) ->
|
27 |
history = []
|
28 |
for q, r in zip(messages[0::2], messages[1::2]):
|
29 |
-
history.append(
|
30 |
return history
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
def model_chat(query: Optional[str], history: Optional[History]) -> Generator[Tuple[str, History], None, None]:
|
33 |
if query is None:
|
34 |
query = ''
|
@@ -36,77 +80,69 @@ def model_chat(query: Optional[str], history: Optional[History]) -> Generator[Tu
|
|
36 |
history = []
|
37 |
if not query.strip():
|
38 |
return
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
)
|
49 |
-
full_response = ''
|
50 |
-
for completion in gen:
|
51 |
-
text = completion.choices[0].delta.content
|
52 |
-
full_response += text or ''
|
53 |
-
yield full_response
|
54 |
-
|
55 |
with gr.Blocks(css='''
|
56 |
.gr-group {direction: rtl;}
|
57 |
.chatbot{text-align:right;}
|
58 |
-
.dicta-header {
|
59 |
-
background-color: var(--input-background-fill); /* Replace with desired background color */
|
60 |
-
border-radius: 10px;
|
61 |
-
padding: 20px;
|
62 |
-
text-align: center;
|
63 |
-
display: flex;
|
64 |
-
flex-direction: row;
|
65 |
-
align-items: center;
|
66 |
-
box-shadow: var(--block-shadow);
|
67 |
-
border-color: var(--block-border-color);
|
68 |
-
border-width: 1px;
|
69 |
-
}
|
70 |
-
|
71 |
-
|
72 |
-
@media (max-width: 768px) {
|
73 |
.dicta-header {
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
}
|
76 |
-
}
|
77 |
-
|
78 |
-
.chatbot.prose {
|
79 |
-
font-size: 1.2em;
|
80 |
-
}
|
81 |
-
.dicta-logo {
|
82 |
-
width: 150px; /* Replace with actual logo width as desired */
|
83 |
-
height: auto;
|
84 |
-
margin-bottom: 20px;
|
85 |
-
}
|
86 |
-
|
87 |
-
.dicta-intro-text {
|
88 |
-
margin-bottom: 20px;
|
89 |
-
text-align: center;
|
90 |
-
display: flex;
|
91 |
-
flex-direction: column;
|
92 |
-
align-items: center;
|
93 |
-
width: 100%;
|
94 |
-
font-size: 1.1em;
|
95 |
-
}
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
gr.Markdown("""
|
102 |
<div class="dicta-header">
|
103 |
<a href="">
|
104 |
-
<img src="file/
|
105 |
</a>
|
106 |
<div class="dicta-intro-text">
|
107 |
-
<h1
|
108 |
<span dir='rtl'>ืืจืืืื ืืืืื ืืืื ืืืื ืืจืืงืืืื ืืจืืฉืื. ืืงืจื ืืช ืืืืืืช ืืืืื ืืจืื ืืืฆื ืืื ืืืื ืืกืืืข ืืื ืืืฉืืืืชืืื</span><br/>
|
109 |
-
<span dir='rtl'>ืืืื ื ืืชื ืขื ืืื
|
110 |
</div>
|
111 |
</div>
|
112 |
""")
|
@@ -118,4 +154,4 @@ with gr.Blocks(css='''
|
|
118 |
interface.textbox.text_align = 'right'
|
119 |
interface.theme_css += '.gr-group {direction: rtl !important;}'
|
120 |
|
121 |
-
demo.queue(api_open=False).launch(max_threads=20, share=False, allowed_paths=['
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
from http import HTTPStatus
|
|
|
4 |
from typing import Generator, List, Optional, Tuple, Dict
|
5 |
+
import re
|
6 |
from urllib.error import HTTPError
|
7 |
+
from flask import Flask, request, jsonify
|
8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
9 |
+
import threading
|
10 |
+
import requests
|
11 |
+
import torch
|
12 |
|
13 |
+
# Load the model and tokenizer
|
14 |
+
model_name = "dicta-il/dictalm2.0-instruct"
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
|
18 |
History = List[Tuple[str, str]]
|
19 |
Messages = List[Dict[str, str]]
|
20 |
|
21 |
def clear_session() -> History:
|
22 |
+
return []
|
23 |
|
24 |
def history_to_messages(history: History) -> Messages:
|
25 |
messages = []
|
|
|
28 |
messages.append({'role': 'assistant', 'content': h[1].strip()})
|
29 |
return messages
|
30 |
|
31 |
+
def messages_to_history(messages: Messages) -> History:
|
32 |
history = []
|
33 |
for q, r in zip(messages[0::2], messages[1::2]):
|
34 |
+
history.append((q['content'], r['content']))
|
35 |
return history
|
36 |
|
37 |
+
# Flask app setup
|
38 |
+
app = Flask(__name__)
|
39 |
+
|
40 |
+
@app.route('/predict', methods=['POST'])
|
41 |
+
def predict():
|
42 |
+
data = request.json
|
43 |
+
input_text = data.get('text', '')
|
44 |
+
|
45 |
+
# Format the input text with instruction tokens
|
46 |
+
formatted_text = f"<s>[INST] {input_text} [/INST]"
|
47 |
+
|
48 |
+
# Tokenize the input
|
49 |
+
inputs = tokenizer(formatted_text, return_tensors='pt', padding=True, truncation=True)
|
50 |
+
|
51 |
+
# Generate the output
|
52 |
+
outputs = model.generate(
|
53 |
+
inputs['input_ids'],
|
54 |
+
attention_mask=inputs['attention_mask'],
|
55 |
+
max_length=1024,
|
56 |
+
temperature=0.7,
|
57 |
+
top_p=0.9,
|
58 |
+
do_sample=True,
|
59 |
+
pad_token_id=tokenizer.eos_token_id
|
60 |
+
)
|
61 |
+
|
62 |
+
# Decode the output
|
63 |
+
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).replace(formatted_text, '').strip()
|
64 |
+
|
65 |
+
return jsonify({"prediction": prediction})
|
66 |
+
|
67 |
+
def run_flask():
|
68 |
+
app.run(host='0.0.0.0', port=5000)
|
69 |
+
|
70 |
+
def is_hebrew(text: str) -> bool:
|
71 |
+
return bool(re.search(r'[\u0590-\u05FF]', text))
|
72 |
+
|
73 |
+
# Run Flask in a separate thread
|
74 |
+
threading.Thread(target=run_flask).start()
|
75 |
+
|
76 |
def model_chat(query: Optional[str], history: Optional[History]) -> Generator[Tuple[str, History], None, None]:
|
77 |
if query is None:
|
78 |
query = ''
|
|
|
80 |
history = []
|
81 |
if not query.strip():
|
82 |
return
|
83 |
+
|
84 |
+
response = requests.post("http://127.0.0.1:5000/predict", json={"text": query.strip()})
|
85 |
+
if response.status_code == 200:
|
86 |
+
prediction = response.json().get("prediction", "")
|
87 |
+
history.append((query, prediction))
|
88 |
+
yield history
|
89 |
+
else:
|
90 |
+
yield history
|
91 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
with gr.Blocks(css='''
|
93 |
.gr-group {direction: rtl;}
|
94 |
.chatbot{text-align:right;}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
.dicta-header {
|
96 |
+
background-color: var(--input-background-fill); /* Replace with desired background color */
|
97 |
+
border-radius: 10px;
|
98 |
+
padding: 20px;
|
99 |
+
text-align: center;
|
100 |
+
display: flex;
|
101 |
+
flex-direction: row;
|
102 |
+
align-items: center;
|
103 |
+
box-shadow: var(--block-shadow);
|
104 |
+
border-color: var(--block-border-color);
|
105 |
+
border-width: 1px;
|
106 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
+
@media (max-width: 768px) {
|
109 |
+
.dicta-header {
|
110 |
+
flex-direction: column; /* Change to vertical for mobile devices */
|
111 |
+
}
|
112 |
+
}
|
113 |
+
|
114 |
+
.chatbot.prose {
|
115 |
+
font-size: 1.2em;
|
116 |
+
}
|
117 |
+
.dicta-logo {
|
118 |
+
width: 150px; /* Replace with actual logo width as desired */
|
119 |
+
height: auto;
|
120 |
+
margin-bottom: 20px;
|
121 |
+
}
|
122 |
+
|
123 |
+
.dicta-intro-text {
|
124 |
+
margin-bottom: 20px;
|
125 |
+
text-align: center;
|
126 |
+
display: flex;
|
127 |
+
flex-direction: column;
|
128 |
+
align-items: center;
|
129 |
+
width: 100%;
|
130 |
+
font-size: 1.1em;
|
131 |
+
}
|
132 |
+
|
133 |
+
textarea {
|
134 |
+
font-size: 1.2em;
|
135 |
+
}
|
136 |
+
''', js=None) as demo:
|
137 |
gr.Markdown("""
|
138 |
<div class="dicta-header">
|
139 |
<a href="">
|
140 |
+
<img src="file/logo_am.png" alt="Dicta Logo" class="dicta-logo">
|
141 |
</a>
|
142 |
<div class="dicta-intro-text">
|
143 |
+
<h1>ืืืืื ืจืืฉืื ืืช</h1>
|
144 |
<span dir='rtl'>ืืจืืืื ืืืืื ืืืื ืืืื ืืจืืงืืืื ืืจืืฉืื. ืืงืจื ืืช ืืืืืืช ืืืืื ืืจืื ืืืฆื ืืื ืืืื ืืกืืืข ืืื ืืืฉืืืืชืืื</span><br/>
|
145 |
+
<span dir='rtl'>ืืืื ื ืืชื ืขื ืืื ืจืืขื ืจืชื ืชืื ืฉืืืืฉ ืืืืื ืฉืคื ืืืงืื ืฉืคืืชื ืขื ืืื ืืคื"ืช</span><br/>
|
146 |
</div>
|
147 |
</div>
|
148 |
""")
|
|
|
154 |
interface.textbox.text_align = 'right'
|
155 |
interface.theme_css += '.gr-group {direction: rtl !important;}'
|
156 |
|
157 |
+
demo.queue(api_open=False).launch(max_threads=20, share=False, allowed_paths=['logo_am.png'])
|