Spaces:
Sleeping
Sleeping
import os | |
import pprint | |
import tempfile | |
from typing import Dict, Text | |
import numpy as np | |
import tensorflow as tf | |
import tensorflow_recommenders as tfrs | |
import os | |
import unidecode | |
from nltk import word_tokenize | |
import re | |
import pandas as pd | |
from nltk.util import ngrams | |
import base64 | |
import hashlib | |
import gradio as gr | |
import scann | |
df=pd.read_csv("/home/user/app/Qatar_translated_best_2500.csv",sep=",",header=0) | |
df=df.drop_duplicates() | |
df=df.dropna() | |
df["nome_vaga"]=df["nome_vaga"].map(lambda x: x.lower().title()) | |
df["requisito"]=df["requisito"].map(lambda x: x[0:1000].lower()) | |
my_dict=dict(df.iloc[0:int(df.shape[0]*0.9),:]) | |
my_dict_cego=dict(df.iloc[int(df.shape[0]*0.9):,:]) | |
ratings = tf.data.Dataset.from_tensor_slices(my_dict).map(lambda x: { | |
"code": x["code"], | |
"nome_vaga": x["nome_vaga"], | |
"requisito": tf.strings.split(x["requisito"],maxsplit=106) | |
}) | |
movies = tf.data.Dataset.from_tensor_slices(dict(df)).map(lambda x: { | |
"code": x["code"], | |
"nome_vaga": x["nome_vaga"] | |
}) | |
movies = movies.map(lambda x: x["code"]) | |
ratings_cego = tf.data.Dataset.from_tensor_slices(my_dict_cego).map(lambda x: { | |
"code": x["code"], | |
"requisito": tf.strings.split(x["requisito"],maxsplit=106) | |
}) | |
tf.random.set_seed(42) | |
shuffled = ratings.shuffle(int(df.shape[0]*0.9), seed=42, reshuffle_each_iteration=False) | |
shuffled2 = ratings_cego.shuffle(int(df.shape[0]*0.1), seed=42, reshuffle_each_iteration=False) | |
train = shuffled.take(int(df.shape[0]*0.9)) | |
test = shuffled.take(int(df.shape[0]*0.1)) | |
cego=shuffled2 | |
movie_titles = movies#.map(lambda x: x["code"]) | |
user_ids = ratings.map(lambda x: x["requisito"]) | |
xx=[] | |
for x in user_ids.as_numpy_iterator(): | |
try: | |
xx.append(x) | |
except: | |
pass | |
unique_movie_titles = np.unique(list(movie_titles.as_numpy_iterator())) | |
unique_user_ids = np.unique(np.concatenate(xx)) | |
user_ids=user_ids.batch(int(df.shape[0]*0.9)) | |
layer = tf.keras.layers.StringLookup(vocabulary=unique_user_ids) | |
unique_movie_titles[:10] | |
embedding_dimension = 768 | |
user_model = tf.keras.Sequential([ | |
tf.keras.layers.StringLookup( | |
vocabulary=unique_user_ids, mask_token=None), | |
# We add an additional embedding to account for unknown tokens. | |
tf.keras.layers.Embedding(len(unique_user_ids) + 1, embedding_dimension), | |
]) | |
movie_model = tf.keras.Sequential([ | |
tf.keras.layers.StringLookup( | |
vocabulary=unique_movie_titles, mask_token=None), | |
tf.keras.layers.Embedding(len(unique_movie_titles) + 1, embedding_dimension) | |
]) | |
metrics = tfrs.metrics.FactorizedTopK( | |
candidates=movies.batch(df.shape[0] | |
).map(movie_model) | |
) | |
task = tfrs.tasks.Retrieval( | |
metrics=metrics | |
) | |
class MovielensModel(tfrs.Model): | |
def __init__(self, user_model, movie_model): | |
super().__init__() | |
self.movie_model: tf.keras.Model = movie_model | |
self.user_model: tf.keras.Model = user_model | |
self.task: tf.keras.layers.Layer = task | |
def compute_loss(self, features: Dict[Text, tf.Tensor], training=False) -> tf.Tensor: | |
user_embeddings = self.user_model(features["requisito"]) | |
positive_movie_embeddings = self.movie_model(features["code"]) | |
return self.task(tf.reduce_sum(user_embeddings,axis=1), positive_movie_embeddings) | |
class NoBaseClassMovielensModel(tf.keras.Model): | |
def __init__(self, user_model, movie_model): | |
super().__init__() | |
self.movie_model: tf.keras.Model = movie_model | |
self.user_model: tf.keras.Model = user_model | |
self.task: tf.keras.layers.Layer = task | |
def train_step(self, features: Dict[Text, tf.Tensor]) -> tf.Tensor: | |
with tf.GradientTape() as tape: | |
user_embeddings = self.user_model(features["requisito"]) | |
positive_movie_embeddings = self.movie_model(features["code"]) | |
loss = self.task(user_embeddings, positive_movie_embeddings) | |
regularization_loss = sum(self.losses) | |
total_loss = loss + regularization_loss | |
gradients = tape.gradient(total_loss, self.trainable_variables) | |
self.optimizer.apply_gradients(zip(gradients, self.trainable_variables)) | |
metrics = {metric.name: metric.result() for metric in self.metrics} | |
metrics["loss"] = loss | |
metrics["regularization_loss"] = regularization_loss | |
metrics["total_loss"] = total_loss | |
return metrics | |
def test_step(self, features: Dict[Text, tf.Tensor]) -> tf.Tensor: | |
user_embeddings = self.user_model(features["requisito"]) | |
positive_movie_embeddings = self.movie_model(features["code"]) | |
loss = self.task(user_embeddings, positive_movie_embeddings) | |
regularization_loss = sum(self.losses) | |
total_loss = loss + regularization_loss | |
metrics = {metric.name: metric.result() for metric in self.metrics} | |
metrics["loss"] = loss | |
metrics["regularization_loss"] = regularization_loss | |
metrics["total_loss"] = total_loss | |
return metrics | |
model = MovielensModel(user_model, movie_model) | |
model.compile(optimizer=tf.keras.optimizers.Adagrad(learning_rate=0.08)) | |
cached_train = train.shuffle(int(df.shape[0]*0.9)).batch(int(df.shape[0]*0.9)).cache() | |
cached_test = test.batch(int(df.shape[0]*0.15)).cache() | |
path = os.path.join("/home/user/app/", "model/") | |
cp_callback = tf.keras.callbacks.ModelCheckpoint( | |
filepath=path, | |
verbose=1, | |
save_weights_only=True, | |
save_freq=2) | |
model.fit(cached_train, callbacks=[cp_callback],epochs=110) | |
index=df["code"].map(lambda x: [model.movie_model(tf.constant(x))]) | |
indice=[] | |
for i in range(0,1633): | |
indice.append(np.array(index)[i][0]) | |
searcher = scann.scann_ops_pybind.builder(np.array(indice), 10, "dot_product").tree( | |
num_leaves=1500, num_leaves_to_search=500, training_sample_size=df.shape[0]).score_brute_force( | |
2, quantize=True).build() | |
import matplotlib.pyplot as plt | |
def predict(text): | |
campos=str(text).lower() | |
query=np.sum([model.user_model(tf.constant(campos.split()[i])) for i in range(0,len(campos.split()))],axis=0) | |
neighbors, distances = searcher.search_batched([query]) | |
xx = df.iloc[neighbors[0],:].nome_vaga | |
fig = plt.figure(figsize=(14,9)) | |
plt.bar(list(xx),distances[0]*0.8*10) | |
plt.title('Degree of match') | |
plt.xlabel('Labels') | |
plt.xticks(rotation=270) | |
plt.ylabel('Distances') | |
for x, y in zip(list(range(0,10)),distances[0]*0.8*10): | |
plt.text(x, y, y, ha='center', va='bottom', fontsize=12, color='black') | |
return xx, fig | |
demo = gr.Interface(fn=predict, inputs=gr.inputs.Textbox(label='CANDIDATE COMPETENCES - Click *Clear* before adding new input'), \ | |
outputs=[gr.outputs.Textbox(label='SUGGESTED VACANCIES'),\ | |
gr.Plot()],\ | |
css='div {margin-left: auto; margin-right: auto; width: 100%;\ | |
background-image: url("https://drive.google.com/uc?export=view&id=1KNnISAUcvh2Pt08f-EJZJYCIgkrKw3PI"); repeat 0 0;}')\ | |
.launch(share=False) | |