Spaces:
Sleeping
Sleeping
Create explore_page.py
Browse files- explore_page.py +75 -0
explore_page.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
|
5 |
+
def shorten_categories(categories, cutoff):
|
6 |
+
categorical_map = {}
|
7 |
+
for i in range(len(categories)):
|
8 |
+
if categories.values[i] >= cutoff:
|
9 |
+
categorical_map[categories.index[i]] = categories.index[i]
|
10 |
+
else:
|
11 |
+
categorical_map[categories.index[i]] = 'Other'
|
12 |
+
return categorical_map
|
13 |
+
|
14 |
+
def clean_experience(x):
|
15 |
+
if x == 'More than 50 years':
|
16 |
+
return 50
|
17 |
+
if x == 'Less than 1 year':
|
18 |
+
return 0.5
|
19 |
+
return float(x)
|
20 |
+
|
21 |
+
def clean_education(x):
|
22 |
+
if 'Bachelor’s degree' in x:
|
23 |
+
return 'Bachelor’s degree'
|
24 |
+
if 'Master’s degree' in x:
|
25 |
+
return 'Master’s degree'
|
26 |
+
if 'Professional degree' in x or 'Other doctoral' in x:
|
27 |
+
return 'Post grad'
|
28 |
+
return 'Less than a Bachelors'
|
29 |
+
|
30 |
+
@st.cache_data
|
31 |
+
def load_data():
|
32 |
+
df = pd.read_csv("survey_results_public.csv")
|
33 |
+
df = df[["Country", "EdLevel", "YearsCodePro", "Employment", "ConvertedCompYearly"]]
|
34 |
+
df = df.rename({"ConvertedCompYearly": "Salary"}, axis=1)
|
35 |
+
df = df[df["Salary"].notnull()]
|
36 |
+
df = df.dropna()
|
37 |
+
df = df[df["Employment"] == "Employed, full-time"]
|
38 |
+
df = df.drop("Employment", axis=1)
|
39 |
+
|
40 |
+
country_map = shorten_categories(df.Country.value_counts(), 400)
|
41 |
+
df['Country'] = df['Country'].map(country_map)
|
42 |
+
df = df[df["Salary"] <= 250000]
|
43 |
+
df = df[df["Salary"] >= 10000]
|
44 |
+
df = df[df['Country'] != 'Other']
|
45 |
+
|
46 |
+
df['YearsCodePro'] = df['YearsCodePro'].apply(clean_experience)
|
47 |
+
df['EdLevel'] = df['EdLevel'].apply(clean_education)
|
48 |
+
return df
|
49 |
+
|
50 |
+
df = load_data()
|
51 |
+
|
52 |
+
def show_explore_page():
|
53 |
+
st.title("Explore Software Engineer Salaries")
|
54 |
+
|
55 |
+
st.write("""### Stack Overflow Developer Survey 2022""")
|
56 |
+
|
57 |
+
data = df["Country"].value_counts()
|
58 |
+
|
59 |
+
fig1, ax1 = plt.subplots()
|
60 |
+
ax1.pie(data, labels=data.index, autopct="%1.1f%%", shadow=True, startangle=90)
|
61 |
+
ax1.axis("equal") # Equal aspect ratio ensures that pie is drawn as a circle.
|
62 |
+
|
63 |
+
st.write("""#### Number of Data from different countries""")
|
64 |
+
|
65 |
+
st.pyplot(fig1)
|
66 |
+
|
67 |
+
st.write("""#### Mean Salary Based On Country""")
|
68 |
+
|
69 |
+
data = df.groupby(["Country"])["Salary"].mean().sort_values(ascending=True)
|
70 |
+
st.bar_chart(data)
|
71 |
+
|
72 |
+
st.write("""#### Mean Salary Based On Experience""")
|
73 |
+
|
74 |
+
data = df.groupby(["YearsCodePro"])["Salary"].mean().sort_values(ascending=True)
|
75 |
+
st.line_chart(data)
|