Ryouko65777 commited on
Commit
db9a06d
1 Parent(s): 577eb8f

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ stftpitchshift filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,12 +1 @@
1
- ---
2
- title: Ryouko65777 Ryo Rvc
3
- emoji: 🐠
4
- colorFrom: red
5
- colorTo: yellow
6
- sdk: gradio
7
- sdk_version: 5.1.0
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+ yes
 
 
 
 
 
 
 
 
 
 
 
lib/infer.py ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+ import gc
4
+ import torch
5
+ from multiprocessing import cpu_count
6
+ from lib.modules import VC
7
+ from lib.split_audio import split_silence_nonsilent, adjust_audio_lengths, combine_silence_nonsilent
8
+
9
+ class Configs:
10
+ def __init__(self, device, is_half):
11
+ self.device = device
12
+ self.is_half = is_half
13
+ self.n_cpu = 0
14
+ self.gpu_name = None
15
+ self.gpu_mem = None
16
+ self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
17
+
18
+ def device_config(self) -> tuple:
19
+ if torch.cuda.is_available():
20
+ i_device = int(self.device.split(":")[-1])
21
+ self.gpu_name = torch.cuda.get_device_name(i_device)
22
+ #if (
23
+ # ("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
24
+ # or "P40" in self.gpu_name.upper()
25
+ # or "1060" in self.gpu_name
26
+ # or "1070" in self.gpu_name
27
+ # or "1080" in self.gpu_name
28
+ # ):
29
+ # print("16 series/10 series P40 forced single precision")
30
+ # self.is_half = False
31
+ # for config_file in ["32k.json", "40k.json", "48k.json"]:
32
+ # with open(BASE_DIR / "src" / "configs" / config_file, "r") as f:
33
+ # strr = f.read().replace("true", "false")
34
+ # with open(BASE_DIR / "src" / "configs" / config_file, "w") as f:
35
+ # f.write(strr)
36
+ # with open(BASE_DIR / "src" / "trainset_preprocess_pipeline_print.py", "r") as f:
37
+ # strr = f.read().replace("3.7", "3.0")
38
+ # with open(BASE_DIR / "src" / "trainset_preprocess_pipeline_print.py", "w") as f:
39
+ # f.write(strr)
40
+ # else:
41
+ # self.gpu_name = None
42
+ # self.gpu_mem = int(
43
+ # torch.cuda.get_device_properties(i_device).total_memory
44
+ # / 1024
45
+ # / 1024
46
+ # / 1024
47
+ # + 0.4
48
+ # )
49
+ # if self.gpu_mem <= 4:
50
+ # with open(BASE_DIR / "src" / "trainset_preprocess_pipeline_print.py", "r") as f:
51
+ # strr = f.read().replace("3.7", "3.0")
52
+ # with open(BASE_DIR / "src" / "trainset_preprocess_pipeline_print.py", "w") as f:
53
+ # f.write(strr)
54
+ elif torch.backends.mps.is_available():
55
+ print("No supported N-card found, use MPS for inference")
56
+ self.device = "mps"
57
+ else:
58
+ print("No supported N-card found, use CPU for inference")
59
+ self.device = "cpu"
60
+
61
+ if self.n_cpu == 0:
62
+ self.n_cpu = cpu_count()
63
+
64
+ if self.is_half:
65
+ # 6G memory config
66
+ x_pad = 3
67
+ x_query = 10
68
+ x_center = 60
69
+ x_max = 65
70
+ else:
71
+ # 5G memory config
72
+ x_pad = 1
73
+ x_query = 6
74
+ x_center = 38
75
+ x_max = 41
76
+
77
+ if self.gpu_mem != None and self.gpu_mem <= 4:
78
+ x_pad = 1
79
+ x_query = 5
80
+ x_center = 30
81
+ x_max = 32
82
+
83
+ return x_pad, x_query, x_center, x_max
84
+
85
+ def get_model(voice_model):
86
+ model_dir = os.path.join(os.getcwd(), "models", voice_model)
87
+ model_filename, index_filename = None, None
88
+ for file in os.listdir(model_dir):
89
+ ext = os.path.splitext(file)[1]
90
+ if ext == '.pth':
91
+ model_filename = file
92
+ if ext == '.index':
93
+ index_filename = file
94
+
95
+ if model_filename is None:
96
+ print(f'No model file exists in {models_dir}.')
97
+ return None, None
98
+
99
+ return os.path.join(model_dir, model_filename), os.path.join(model_dir, index_filename) if index_filename else ''
100
+
101
+ def infer_audio(
102
+ model_name,
103
+ audio_path,
104
+ f0_change=0,
105
+ f0_method="rmvpe+",
106
+ min_pitch="50",
107
+ max_pitch="1100",
108
+ crepe_hop_length=128,
109
+ index_rate=0.75,
110
+ filter_radius=3,
111
+ rms_mix_rate=0.25,
112
+ protect=0.33,
113
+ split_infer=False,
114
+ min_silence=500,
115
+ silence_threshold=-50,
116
+ seek_step=1,
117
+ keep_silence=100,
118
+ do_formant=False,
119
+ quefrency=0,
120
+ timbre=1,
121
+ f0_autotune=False,
122
+ audio_format="wav",
123
+ resample_sr=0,
124
+ hubert_model_path="assets/hubert/hubert_base.pt",
125
+ rmvpe_model_path="assets/rmvpe/rmvpe.pt",
126
+ fcpe_model_path="assets/fcpe/fcpe.pt"
127
+ ):
128
+ os.environ["rmvpe_model_path"] = rmvpe_model_path
129
+ os.environ["fcpe_model_path"] = fcpe_model_path
130
+ configs = Configs('cuda:0', True)
131
+ vc = VC(configs)
132
+ pth_path, index_path = get_model(model_name)
133
+ vc_data = vc.get_vc(pth_path, protect, 0.5)
134
+
135
+ if split_infer:
136
+ inferred_files = []
137
+ temp_dir = os.path.join(os.getcwd(), "seperate", "temp")
138
+ os.makedirs(temp_dir, exist_ok=True)
139
+ print("Splitting audio to silence and nonsilent segments.")
140
+ silence_files, nonsilent_files = split_silence_nonsilent(audio_path, min_silence, silence_threshold, seek_step, keep_silence)
141
+ print(f"Total silence segments: {len(silence_files)}.\nTotal nonsilent segments: {len(nonsilent_files)}.")
142
+ for i, nonsilent_file in enumerate(nonsilent_files):
143
+ print(f"Inferring nonsilent audio {i+1}")
144
+ inference_info, audio_data, output_path = vc.vc_single(
145
+ 0,
146
+ nonsilent_file,
147
+ f0_change,
148
+ f0_method,
149
+ index_path,
150
+ index_path,
151
+ index_rate,
152
+ filter_radius,
153
+ resample_sr,
154
+ rms_mix_rate,
155
+ protect,
156
+ audio_format,
157
+ crepe_hop_length,
158
+ do_formant,
159
+ quefrency,
160
+ timbre,
161
+ min_pitch,
162
+ max_pitch,
163
+ f0_autotune,
164
+ hubert_model_path
165
+ )
166
+ if inference_info[0] == "Success.":
167
+ print("Inference ran successfully.")
168
+ print(inference_info[1])
169
+ print("Times:\nnpy: %.2fs f0: %.2fs infer: %.2fs\nTotal time: %.2fs" % (*inference_info[2],))
170
+ else:
171
+ print(f"An error occurred while processing.\n{inference_info[0]}")
172
+ return None
173
+ inferred_files.append(output_path)
174
+ print("Adjusting inferred audio lengths.")
175
+ adjusted_inferred_files = adjust_audio_lengths(nonsilent_files, inferred_files)
176
+ print("Combining silence and inferred audios.")
177
+ output_count = 1
178
+ while True:
179
+ output_path = os.path.join(os.getcwd(), "output", f"{os.path.splitext(os.path.basename(audio_path))[0]}{model_name}{f0_method.capitalize()}_{output_count}.{audio_format}")
180
+ if not os.path.exists(output_path):
181
+ break
182
+ output_count += 1
183
+ output_path = combine_silence_nonsilent(silence_files, adjusted_inferred_files, keep_silence, output_path)
184
+ [shutil.move(inferred_file, temp_dir) for inferred_file in inferred_files]
185
+ shutil.rmtree(temp_dir)
186
+ else:
187
+ inference_info, audio_data, output_path = vc.vc_single(
188
+ 0,
189
+ audio_path,
190
+ f0_change,
191
+ f0_method,
192
+ index_path,
193
+ index_path,
194
+ index_rate,
195
+ filter_radius,
196
+ resample_sr,
197
+ rms_mix_rate,
198
+ protect,
199
+ audio_format,
200
+ crepe_hop_length,
201
+ do_formant,
202
+ quefrency,
203
+ timbre,
204
+ min_pitch,
205
+ max_pitch,
206
+ f0_autotune,
207
+ hubert_model_path
208
+ )
209
+ if inference_info[0] == "Success.":
210
+ print("Inference ran successfully.")
211
+ print(inference_info[1])
212
+ print("Times:\nnpy: %.2fs f0: %.2fs infer: %.2fs\nTotal time: %.2fs" % (*inference_info[2],))
213
+ else:
214
+ print(f"An error occurred while processing.\n{inference_info[0]}")
215
+ del configs, vc
216
+ gc.collect()
217
+ return inference_info[0]
218
+
219
+ del configs, vc
220
+ gc.collect()
221
+ return output_path
lib/infer_libs/audio.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import av
3
+ import ffmpeg
4
+ import os
5
+ import traceback
6
+ import sys
7
+ import subprocess
8
+
9
+ platform_stft_mapping = {
10
+ 'linux': os.path.join(os.getcwd(), 'stftpitchshift'),
11
+ 'darwin': os.path.join(os.getcwd(), 'stftpitchshift'),
12
+ 'win32': os.path.join(os.getcwd(), 'stftpitchshift.exe'),
13
+ }
14
+
15
+ stft = platform_stft_mapping.get(sys.platform)
16
+
17
+ def wav2(i, o, format):
18
+ inp = av.open(i, 'rb')
19
+ if format == "m4a": format = "mp4"
20
+ out = av.open(o, 'wb', format=format)
21
+ if format == "ogg": format = "libvorbis"
22
+ if format == "mp4": format = "aac"
23
+
24
+ ostream = out.add_stream(format)
25
+
26
+ for frame in inp.decode(audio=0):
27
+ for p in ostream.encode(frame): out.mux(p)
28
+
29
+ for p in ostream.encode(None): out.mux(p)
30
+
31
+ out.close()
32
+ inp.close()
33
+
34
+ def load_audio(file, sr, DoFormant=False, Quefrency=1.0, Timbre=1.0):
35
+ formanted = False
36
+ file = file.strip(' \n"')
37
+ if not os.path.exists(file):
38
+ raise RuntimeError(
39
+ "Wrong audio path, that does not exist."
40
+ )
41
+
42
+ try:
43
+ if DoFormant:
44
+ print("Starting formant shift. Please wait as this process takes a while.")
45
+ formanted_file = f"{os.path.splitext(os.path.basename(file))[0]}_formanted{os.path.splitext(os.path.basename(file))[1]}"
46
+ command = (
47
+ f'{stft} -i "{file}" -q "{Quefrency}" '
48
+ f'-t "{Timbre}" -o "{formanted_file}"'
49
+ )
50
+ subprocess.run(command, shell=True)
51
+ file = formanted_file
52
+ print(f"Formanted {file}\n")
53
+
54
+ # https://github.com/openai/whisper/blob/main/whisper/audio.py#L26
55
+ # This launches a subprocess to decode audio while down-mixing and resampling as necessary.
56
+ # Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
57
+ file = (
58
+ file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
59
+ ) # Prevent small white copy path head and tail with spaces and " and return
60
+ out, _ = (
61
+ ffmpeg.input(file, threads=0)
62
+ .output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr)
63
+ .run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
64
+ )
65
+
66
+ return np.frombuffer(out, np.float32).flatten()
67
+
68
+ except Exception as e:
69
+ raise RuntimeError(f"Failed to load audio: {e}")
70
+
71
+ def check_audio_duration(file):
72
+ try:
73
+ file = file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
74
+
75
+ probe = ffmpeg.probe(file)
76
+
77
+ duration = float(probe['streams'][0]['duration'])
78
+
79
+ if duration < 0.76:
80
+ print(
81
+ f"Audio file, {file.split('/')[-1]}, under ~0.76s detected - file is too short. Target at least 1-2s for best results."
82
+ )
83
+ return False
84
+
85
+ return True
86
+ except Exception as e:
87
+ raise RuntimeError(f"Failed to check audio duration: {e}")
lib/infer_libs/fcpe.py ADDED
@@ -0,0 +1,873 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Union
2
+
3
+ import torch.nn.functional as F
4
+ import numpy as np
5
+ import torch
6
+ import torch.nn as nn
7
+ from torch.nn.utils import weight_norm
8
+ from torchaudio.transforms import Resample
9
+ import os
10
+ import librosa
11
+ import soundfile as sf
12
+ import torch.utils.data
13
+ from librosa.filters import mel as librosa_mel_fn
14
+ import math
15
+ from functools import partial
16
+
17
+ from einops import rearrange, repeat
18
+ from local_attention import LocalAttention
19
+ from torch import nn
20
+
21
+ os.environ["LRU_CACHE_CAPACITY"] = "3"
22
+
23
+ def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False):
24
+ sampling_rate = None
25
+ try:
26
+ data, sampling_rate = sf.read(full_path, always_2d=True)# than soundfile.
27
+ except Exception as ex:
28
+ print(f"'{full_path}' failed to load.\nException:")
29
+ print(ex)
30
+ if return_empty_on_exception:
31
+ return [], sampling_rate or target_sr or 48000
32
+ else:
33
+ raise Exception(ex)
34
+
35
+ if len(data.shape) > 1:
36
+ data = data[:, 0]
37
+ assert len(data) > 2# check duration of audio file is > 2 samples (because otherwise the slice operation was on the wrong dimension)
38
+
39
+ if np.issubdtype(data.dtype, np.integer): # if audio data is type int
40
+ max_mag = -np.iinfo(data.dtype).min # maximum magnitude = min possible value of intXX
41
+ else: # if audio data is type fp32
42
+ max_mag = max(np.amax(data), -np.amin(data))
43
+ max_mag = (2**31)+1 if max_mag > (2**15) else ((2**15)+1 if max_mag > 1.01 else 1.0) # data should be either 16-bit INT, 32-bit INT or [-1 to 1] float32
44
+
45
+ data = torch.FloatTensor(data.astype(np.float32))/max_mag
46
+
47
+ if (torch.isinf(data) | torch.isnan(data)).any() and return_empty_on_exception:# resample will crash with inf/NaN inputs. return_empty_on_exception will return empty arr instead of except
48
+ return [], sampling_rate or target_sr or 48000
49
+ if target_sr is not None and sampling_rate != target_sr:
50
+ data = torch.from_numpy(librosa.core.resample(data.numpy(), orig_sr=sampling_rate, target_sr=target_sr))
51
+ sampling_rate = target_sr
52
+
53
+ return data, sampling_rate
54
+
55
+ def dynamic_range_compression(x, C=1, clip_val=1e-5):
56
+ return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
57
+
58
+ def dynamic_range_decompression(x, C=1):
59
+ return np.exp(x) / C
60
+
61
+ def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
62
+ return torch.log(torch.clamp(x, min=clip_val) * C)
63
+
64
+ def dynamic_range_decompression_torch(x, C=1):
65
+ return torch.exp(x) / C
66
+
67
+ class STFT():
68
+ def __init__(self, sr=22050, n_mels=80, n_fft=1024, win_size=1024, hop_length=256, fmin=20, fmax=11025, clip_val=1e-5):
69
+ self.target_sr = sr
70
+
71
+ self.n_mels = n_mels
72
+ self.n_fft = n_fft
73
+ self.win_size = win_size
74
+ self.hop_length = hop_length
75
+ self.fmin = fmin
76
+ self.fmax = fmax
77
+ self.clip_val = clip_val
78
+ self.mel_basis = {}
79
+ self.hann_window = {}
80
+
81
+ def get_mel(self, y, keyshift=0, speed=1, center=False, train=False):
82
+ sampling_rate = self.target_sr
83
+ n_mels = self.n_mels
84
+ n_fft = self.n_fft
85
+ win_size = self.win_size
86
+ hop_length = self.hop_length
87
+ fmin = self.fmin
88
+ fmax = self.fmax
89
+ clip_val = self.clip_val
90
+
91
+ factor = 2 ** (keyshift / 12)
92
+ n_fft_new = int(np.round(n_fft * factor))
93
+ win_size_new = int(np.round(win_size * factor))
94
+ hop_length_new = int(np.round(hop_length * speed))
95
+ if not train:
96
+ mel_basis = self.mel_basis
97
+ hann_window = self.hann_window
98
+ else:
99
+ mel_basis = {}
100
+ hann_window = {}
101
+
102
+ if torch.min(y) < -1.:
103
+ print('min value is ', torch.min(y))
104
+ if torch.max(y) > 1.:
105
+ print('max value is ', torch.max(y))
106
+
107
+ mel_basis_key = str(fmax)+'_'+str(y.device)
108
+ if mel_basis_key not in mel_basis:
109
+ mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax)
110
+ mel_basis[mel_basis_key] = torch.from_numpy(mel).float().to(y.device)
111
+
112
+ keyshift_key = str(keyshift)+'_'+str(y.device)
113
+ if keyshift_key not in hann_window:
114
+ hann_window[keyshift_key] = torch.hann_window(win_size_new).to(y.device)
115
+
116
+ pad_left = (win_size_new - hop_length_new) //2
117
+ pad_right = max((win_size_new- hop_length_new + 1) //2, win_size_new - y.size(-1) - pad_left)
118
+ if pad_right < y.size(-1):
119
+ mode = 'reflect'
120
+ else:
121
+ mode = 'constant'
122
+ y = torch.nn.functional.pad(y.unsqueeze(1), (pad_left, pad_right), mode = mode)
123
+ y = y.squeeze(1)
124
+
125
+ spec = torch.stft(y, n_fft_new, hop_length=hop_length_new, win_length=win_size_new, window=hann_window[keyshift_key],
126
+ center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True)
127
+ spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + (1e-9))
128
+ if keyshift != 0:
129
+ size = n_fft // 2 + 1
130
+ resize = spec.size(1)
131
+ if resize < size:
132
+ spec = F.pad(spec, (0, 0, 0, size-resize))
133
+ spec = spec[:, :size, :] * win_size / win_size_new
134
+ spec = torch.matmul(mel_basis[mel_basis_key], spec)
135
+ spec = dynamic_range_compression_torch(spec, clip_val=clip_val)
136
+ return spec
137
+
138
+ def __call__(self, audiopath):
139
+ audio, sr = load_wav_to_torch(audiopath, target_sr=self.target_sr)
140
+ spect = self.get_mel(audio.unsqueeze(0)).squeeze(0)
141
+ return spect
142
+
143
+ stft = STFT()
144
+
145
+ #import fast_transformers.causal_product.causal_product_cuda
146
+
147
+ def softmax_kernel(data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device = None):
148
+ b, h, *_ = data.shape
149
+ # (batch size, head, length, model_dim)
150
+
151
+ # normalize model dim
152
+ data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1.
153
+
154
+ # what is ration?, projection_matrix.shape[0] --> 266
155
+
156
+ ratio = (projection_matrix.shape[0] ** -0.5)
157
+
158
+ projection = repeat(projection_matrix, 'j d -> b h j d', b = b, h = h)
159
+ projection = projection.type_as(data)
160
+
161
+ #data_dash = w^T x
162
+ data_dash = torch.einsum('...id,...jd->...ij', (data_normalizer * data), projection)
163
+
164
+
165
+ # diag_data = D**2
166
+ diag_data = data ** 2
167
+ diag_data = torch.sum(diag_data, dim=-1)
168
+ diag_data = (diag_data / 2.0) * (data_normalizer ** 2)
169
+ diag_data = diag_data.unsqueeze(dim=-1)
170
+
171
+ #print ()
172
+ if is_query:
173
+ data_dash = ratio * (
174
+ torch.exp(data_dash - diag_data -
175
+ torch.max(data_dash, dim=-1, keepdim=True).values) + eps)
176
+ else:
177
+ data_dash = ratio * (
178
+ torch.exp(data_dash - diag_data + eps))#- torch.max(data_dash)) + eps)
179
+
180
+ return data_dash.type_as(data)
181
+
182
+ def orthogonal_matrix_chunk(cols, qr_uniform_q = False, device = None):
183
+ unstructured_block = torch.randn((cols, cols), device = device)
184
+ q, r = torch.linalg.qr(unstructured_block.cpu(), mode='reduced')
185
+ q, r = map(lambda t: t.to(device), (q, r))
186
+
187
+ # proposed by @Parskatt
188
+ # to make sure Q is uniform https://arxiv.org/pdf/math-ph/0609050.pdf
189
+ if qr_uniform_q:
190
+ d = torch.diag(r, 0)
191
+ q *= d.sign()
192
+ return q.t()
193
+ def exists(val):
194
+ return val is not None
195
+
196
+ def empty(tensor):
197
+ return tensor.numel() == 0
198
+
199
+ def default(val, d):
200
+ return val if exists(val) else d
201
+
202
+ def cast_tuple(val):
203
+ return (val,) if not isinstance(val, tuple) else val
204
+
205
+ class PCmer(nn.Module):
206
+ """The encoder that is used in the Transformer model."""
207
+
208
+ def __init__(self,
209
+ num_layers,
210
+ num_heads,
211
+ dim_model,
212
+ dim_keys,
213
+ dim_values,
214
+ residual_dropout,
215
+ attention_dropout):
216
+ super().__init__()
217
+ self.num_layers = num_layers
218
+ self.num_heads = num_heads
219
+ self.dim_model = dim_model
220
+ self.dim_values = dim_values
221
+ self.dim_keys = dim_keys
222
+ self.residual_dropout = residual_dropout
223
+ self.attention_dropout = attention_dropout
224
+
225
+ self._layers = nn.ModuleList([_EncoderLayer(self) for _ in range(num_layers)])
226
+
227
+ # METHODS ########################################################################################################
228
+
229
+ def forward(self, phone, mask=None):
230
+
231
+ # apply all layers to the input
232
+ for (i, layer) in enumerate(self._layers):
233
+ phone = layer(phone, mask)
234
+ # provide the final sequence
235
+ return phone
236
+
237
+
238
+ # ==================================================================================================================== #
239
+ # CLASS _ E N C O D E R L A Y E R #
240
+ # ==================================================================================================================== #
241
+
242
+
243
+ class _EncoderLayer(nn.Module):
244
+ """One layer of the encoder.
245
+
246
+ Attributes:
247
+ attn: (:class:`mha.MultiHeadAttention`): The attention mechanism that is used to read the input sequence.
248
+ feed_forward (:class:`ffl.FeedForwardLayer`): The feed-forward layer on top of the attention mechanism.
249
+ """
250
+
251
+ def __init__(self, parent: PCmer):
252
+ """Creates a new instance of ``_EncoderLayer``.
253
+
254
+ Args:
255
+ parent (Encoder): The encoder that the layers is created for.
256
+ """
257
+ super().__init__()
258
+
259
+
260
+ self.conformer = ConformerConvModule(parent.dim_model)
261
+ self.norm = nn.LayerNorm(parent.dim_model)
262
+ self.dropout = nn.Dropout(parent.residual_dropout)
263
+
264
+ # selfatt -> fastatt: performer!
265
+ self.attn = SelfAttention(dim = parent.dim_model,
266
+ heads = parent.num_heads,
267
+ causal = False)
268
+
269
+ # METHODS ########################################################################################################
270
+
271
+ def forward(self, phone, mask=None):
272
+
273
+ # compute attention sub-layer
274
+ phone = phone + (self.attn(self.norm(phone), mask=mask))
275
+
276
+ phone = phone + (self.conformer(phone))
277
+
278
+ return phone
279
+
280
+ def calc_same_padding(kernel_size):
281
+ pad = kernel_size // 2
282
+ return (pad, pad - (kernel_size + 1) % 2)
283
+
284
+ # helper classes
285
+
286
+ class Swish(nn.Module):
287
+ def forward(self, x):
288
+ return x * x.sigmoid()
289
+
290
+ class Transpose(nn.Module):
291
+ def __init__(self, dims):
292
+ super().__init__()
293
+ assert len(dims) == 2, 'dims must be a tuple of two dimensions'
294
+ self.dims = dims
295
+
296
+ def forward(self, x):
297
+ return x.transpose(*self.dims)
298
+
299
+ class GLU(nn.Module):
300
+ def __init__(self, dim):
301
+ super().__init__()
302
+ self.dim = dim
303
+
304
+ def forward(self, x):
305
+ out, gate = x.chunk(2, dim=self.dim)
306
+ return out * gate.sigmoid()
307
+
308
+ class DepthWiseConv1d(nn.Module):
309
+ def __init__(self, chan_in, chan_out, kernel_size, padding):
310
+ super().__init__()
311
+ self.padding = padding
312
+ self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, groups = chan_in)
313
+
314
+ def forward(self, x):
315
+ x = F.pad(x, self.padding)
316
+ return self.conv(x)
317
+
318
+ class ConformerConvModule(nn.Module):
319
+ def __init__(
320
+ self,
321
+ dim,
322
+ causal = False,
323
+ expansion_factor = 2,
324
+ kernel_size = 31,
325
+ dropout = 0.):
326
+ super().__init__()
327
+
328
+ inner_dim = dim * expansion_factor
329
+ padding = calc_same_padding(kernel_size) if not causal else (kernel_size - 1, 0)
330
+
331
+ self.net = nn.Sequential(
332
+ nn.LayerNorm(dim),
333
+ Transpose((1, 2)),
334
+ nn.Conv1d(dim, inner_dim * 2, 1),
335
+ GLU(dim=1),
336
+ DepthWiseConv1d(inner_dim, inner_dim, kernel_size = kernel_size, padding = padding),
337
+ #nn.BatchNorm1d(inner_dim) if not causal else nn.Identity(),
338
+ Swish(),
339
+ nn.Conv1d(inner_dim, dim, 1),
340
+ Transpose((1, 2)),
341
+ nn.Dropout(dropout)
342
+ )
343
+
344
+ def forward(self, x):
345
+ return self.net(x)
346
+
347
+ def linear_attention(q, k, v):
348
+ if v is None:
349
+ #print (k.size(), q.size())
350
+ out = torch.einsum('...ed,...nd->...ne', k, q)
351
+ return out
352
+
353
+ else:
354
+ k_cumsum = k.sum(dim = -2)
355
+ #k_cumsum = k.sum(dim = -2)
356
+ D_inv = 1. / (torch.einsum('...nd,...d->...n', q, k_cumsum.type_as(q)) + 1e-8)
357
+
358
+ context = torch.einsum('...nd,...ne->...de', k, v)
359
+ #print ("TRUEEE: ", context.size(), q.size(), D_inv.size())
360
+ out = torch.einsum('...de,...nd,...n->...ne', context, q, D_inv)
361
+ return out
362
+
363
+ def gaussian_orthogonal_random_matrix(nb_rows, nb_columns, scaling = 0, qr_uniform_q = False, device = None):
364
+ nb_full_blocks = int(nb_rows / nb_columns)
365
+ #print (nb_full_blocks)
366
+ block_list = []
367
+
368
+ for _ in range(nb_full_blocks):
369
+ q = orthogonal_matrix_chunk(nb_columns, qr_uniform_q = qr_uniform_q, device = device)
370
+ block_list.append(q)
371
+ # block_list[n] is a orthogonal matrix ... (model_dim * model_dim)
372
+ #print (block_list[0].size(), torch.einsum('...nd,...nd->...n', block_list[0], torch.roll(block_list[0],1,1)))
373
+ #print (nb_rows, nb_full_blocks, nb_columns)
374
+ remaining_rows = nb_rows - nb_full_blocks * nb_columns
375
+ #print (remaining_rows)
376
+ if remaining_rows > 0:
377
+ q = orthogonal_matrix_chunk(nb_columns, qr_uniform_q = qr_uniform_q, device = device)
378
+ #print (q[:remaining_rows].size())
379
+ block_list.append(q[:remaining_rows])
380
+
381
+ final_matrix = torch.cat(block_list)
382
+
383
+ if scaling == 0:
384
+ multiplier = torch.randn((nb_rows, nb_columns), device = device).norm(dim = 1)
385
+ elif scaling == 1:
386
+ multiplier = math.sqrt((float(nb_columns))) * torch.ones((nb_rows,), device = device)
387
+ else:
388
+ raise ValueError(f'Invalid scaling {scaling}')
389
+
390
+ return torch.diag(multiplier) @ final_matrix
391
+
392
+ class FastAttention(nn.Module):
393
+ def __init__(self, dim_heads, nb_features = None, ortho_scaling = 0, causal = False, generalized_attention = False, kernel_fn = nn.ReLU(), qr_uniform_q = False, no_projection = False):
394
+ super().__init__()
395
+ nb_features = default(nb_features, int(dim_heads * math.log(dim_heads)))
396
+
397
+ self.dim_heads = dim_heads
398
+ self.nb_features = nb_features
399
+ self.ortho_scaling = ortho_scaling
400
+
401
+ self.create_projection = partial(gaussian_orthogonal_random_matrix, nb_rows = self.nb_features, nb_columns = dim_heads, scaling = ortho_scaling, qr_uniform_q = qr_uniform_q)
402
+ projection_matrix = self.create_projection()
403
+ self.register_buffer('projection_matrix', projection_matrix)
404
+
405
+ self.generalized_attention = generalized_attention
406
+ self.kernel_fn = kernel_fn
407
+
408
+ # if this is turned on, no projection will be used
409
+ # queries and keys will be softmax-ed as in the original efficient attention paper
410
+ self.no_projection = no_projection
411
+
412
+ self.causal = causal
413
+
414
+ @torch.no_grad()
415
+ def redraw_projection_matrix(self):
416
+ projections = self.create_projection()
417
+ self.projection_matrix.copy_(projections)
418
+ del projections
419
+
420
+ def forward(self, q, k, v):
421
+ device = q.device
422
+
423
+ if self.no_projection:
424
+ q = q.softmax(dim = -1)
425
+ k = torch.exp(k) if self.causal else k.softmax(dim = -2)
426
+ else:
427
+ create_kernel = partial(softmax_kernel, projection_matrix = self.projection_matrix, device = device)
428
+
429
+ q = create_kernel(q, is_query = True)
430
+ k = create_kernel(k, is_query = False)
431
+
432
+ attn_fn = linear_attention if not self.causal else self.causal_linear_fn
433
+ if v is None:
434
+ out = attn_fn(q, k, None)
435
+ return out
436
+ else:
437
+ out = attn_fn(q, k, v)
438
+ return out
439
+ class SelfAttention(nn.Module):
440
+ def __init__(self, dim, causal = False, heads = 8, dim_head = 64, local_heads = 0, local_window_size = 256, nb_features = None, feature_redraw_interval = 1000, generalized_attention = False, kernel_fn = nn.ReLU(), qr_uniform_q = False, dropout = 0., no_projection = False):
441
+ super().__init__()
442
+ assert dim % heads == 0, 'dimension must be divisible by number of heads'
443
+ dim_head = default(dim_head, dim // heads)
444
+ inner_dim = dim_head * heads
445
+ self.fast_attention = FastAttention(dim_head, nb_features, causal = causal, generalized_attention = generalized_attention, kernel_fn = kernel_fn, qr_uniform_q = qr_uniform_q, no_projection = no_projection)
446
+
447
+ self.heads = heads
448
+ self.global_heads = heads - local_heads
449
+ self.local_attn = LocalAttention(window_size = local_window_size, causal = causal, autopad = True, dropout = dropout, look_forward = int(not causal), rel_pos_emb_config = (dim_head, local_heads)) if local_heads > 0 else None
450
+
451
+ #print (heads, nb_features, dim_head)
452
+ #name_embedding = torch.zeros(110, heads, dim_head, dim_head)
453
+ #self.name_embedding = nn.Parameter(name_embedding, requires_grad=True)
454
+
455
+
456
+ self.to_q = nn.Linear(dim, inner_dim)
457
+ self.to_k = nn.Linear(dim, inner_dim)
458
+ self.to_v = nn.Linear(dim, inner_dim)
459
+ self.to_out = nn.Linear(inner_dim, dim)
460
+ self.dropout = nn.Dropout(dropout)
461
+
462
+ @torch.no_grad()
463
+ def redraw_projection_matrix(self):
464
+ self.fast_attention.redraw_projection_matrix()
465
+ #torch.nn.init.zeros_(self.name_embedding)
466
+ #print (torch.sum(self.name_embedding))
467
+ def forward(self, x, context = None, mask = None, context_mask = None, name=None, inference=False, **kwargs):
468
+ _, _, _, h, gh = *x.shape, self.heads, self.global_heads
469
+
470
+ cross_attend = exists(context)
471
+
472
+ context = default(context, x)
473
+ context_mask = default(context_mask, mask) if not cross_attend else context_mask
474
+ #print (torch.sum(self.name_embedding))
475
+ q, k, v = self.to_q(x), self.to_k(context), self.to_v(context)
476
+
477
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
478
+ (q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v))
479
+
480
+ attn_outs = []
481
+ #print (name)
482
+ #print (self.name_embedding[name].size())
483
+ if not empty(q):
484
+ if exists(context_mask):
485
+ global_mask = context_mask[:, None, :, None]
486
+ v.masked_fill_(~global_mask, 0.)
487
+ if cross_attend:
488
+ pass
489
+ #print (torch.sum(self.name_embedding))
490
+ #out = self.fast_attention(q,self.name_embedding[name],None)
491
+ #print (torch.sum(self.name_embedding[...,-1:]))
492
+ else:
493
+ out = self.fast_attention(q, k, v)
494
+ attn_outs.append(out)
495
+
496
+ if not empty(lq):
497
+ assert not cross_attend, 'local attention is not compatible with cross attention'
498
+ out = self.local_attn(lq, lk, lv, input_mask = mask)
499
+ attn_outs.append(out)
500
+
501
+ out = torch.cat(attn_outs, dim = 1)
502
+ out = rearrange(out, 'b h n d -> b n (h d)')
503
+ out = self.to_out(out)
504
+ return self.dropout(out)
505
+
506
+ def l2_regularization(model, l2_alpha):
507
+ l2_loss = []
508
+ for module in model.modules():
509
+ if type(module) is nn.Conv2d:
510
+ l2_loss.append((module.weight ** 2).sum() / 2.0)
511
+ return l2_alpha * sum(l2_loss)
512
+
513
+
514
+ class FCPEModel(nn.Module):
515
+ def __init__(
516
+ self,
517
+ input_channel=128,
518
+ out_dims=360,
519
+ n_layers=12,
520
+ n_chans=512,
521
+ use_siren=False,
522
+ use_full=False,
523
+ loss_mse_scale=10,
524
+ loss_l2_regularization=False,
525
+ loss_l2_regularization_scale=1,
526
+ loss_grad1_mse=False,
527
+ loss_grad1_mse_scale=1,
528
+ f0_max=1975.5,
529
+ f0_min=32.70,
530
+ confidence=False,
531
+ threshold=0.05,
532
+ use_input_conv=True
533
+ ):
534
+ super().__init__()
535
+ if use_siren is True:
536
+ raise ValueError("Siren is not supported yet.")
537
+ if use_full is True:
538
+ raise ValueError("Full model is not supported yet.")
539
+
540
+ self.loss_mse_scale = loss_mse_scale if (loss_mse_scale is not None) else 10
541
+ self.loss_l2_regularization = loss_l2_regularization if (loss_l2_regularization is not None) else False
542
+ self.loss_l2_regularization_scale = loss_l2_regularization_scale if (loss_l2_regularization_scale
543
+ is not None) else 1
544
+ self.loss_grad1_mse = loss_grad1_mse if (loss_grad1_mse is not None) else False
545
+ self.loss_grad1_mse_scale = loss_grad1_mse_scale if (loss_grad1_mse_scale is not None) else 1
546
+ self.f0_max = f0_max if (f0_max is not None) else 1975.5
547
+ self.f0_min = f0_min if (f0_min is not None) else 32.70
548
+ self.confidence = confidence if (confidence is not None) else False
549
+ self.threshold = threshold if (threshold is not None) else 0.05
550
+ self.use_input_conv = use_input_conv if (use_input_conv is not None) else True
551
+
552
+ self.cent_table_b = torch.Tensor(
553
+ np.linspace(self.f0_to_cent(torch.Tensor([f0_min]))[0], self.f0_to_cent(torch.Tensor([f0_max]))[0],
554
+ out_dims))
555
+ self.register_buffer("cent_table", self.cent_table_b)
556
+
557
+ # conv in stack
558
+ _leaky = nn.LeakyReLU()
559
+ self.stack = nn.Sequential(
560
+ nn.Conv1d(input_channel, n_chans, 3, 1, 1),
561
+ nn.GroupNorm(4, n_chans),
562
+ _leaky,
563
+ nn.Conv1d(n_chans, n_chans, 3, 1, 1))
564
+
565
+ # transformer
566
+ self.decoder = PCmer(
567
+ num_layers=n_layers,
568
+ num_heads=8,
569
+ dim_model=n_chans,
570
+ dim_keys=n_chans,
571
+ dim_values=n_chans,
572
+ residual_dropout=0.1,
573
+ attention_dropout=0.1)
574
+ self.norm = nn.LayerNorm(n_chans)
575
+
576
+ # out
577
+ self.n_out = out_dims
578
+ self.dense_out = weight_norm(
579
+ nn.Linear(n_chans, self.n_out))
580
+
581
+ def forward(self, mel, infer=True, gt_f0=None, return_hz_f0=False, cdecoder = "local_argmax"):
582
+ """
583
+ input:
584
+ B x n_frames x n_unit
585
+ return:
586
+ dict of B x n_frames x feat
587
+ """
588
+ if cdecoder == "argmax":
589
+ self.cdecoder = self.cents_decoder
590
+ elif cdecoder == "local_argmax":
591
+ self.cdecoder = self.cents_local_decoder
592
+ if self.use_input_conv:
593
+ x = self.stack(mel.transpose(1, 2)).transpose(1, 2)
594
+ else:
595
+ x = mel
596
+ x = self.decoder(x)
597
+ x = self.norm(x)
598
+ x = self.dense_out(x) # [B,N,D]
599
+ x = torch.sigmoid(x)
600
+ if not infer:
601
+ gt_cent_f0 = self.f0_to_cent(gt_f0) # mel f0 #[B,N,1]
602
+ gt_cent_f0 = self.gaussian_blurred_cent(gt_cent_f0) # #[B,N,out_dim]
603
+ loss_all = self.loss_mse_scale * F.binary_cross_entropy(x, gt_cent_f0) # bce loss
604
+ # l2 regularization
605
+ if self.loss_l2_regularization:
606
+ loss_all = loss_all + l2_regularization(model=self, l2_alpha=self.loss_l2_regularization_scale)
607
+ x = loss_all
608
+ if infer:
609
+ x = self.cdecoder(x)
610
+ x = self.cent_to_f0(x)
611
+ if not return_hz_f0:
612
+ x = (1 + x / 700).log()
613
+ return x
614
+
615
+ def cents_decoder(self, y, mask=True):
616
+ B, N, _ = y.size()
617
+ ci = self.cent_table[None, None, :].expand(B, N, -1)
618
+ rtn = torch.sum(ci * y, dim=-1, keepdim=True) / torch.sum(y, dim=-1, keepdim=True) # cents: [B,N,1]
619
+ if mask:
620
+ confident = torch.max(y, dim=-1, keepdim=True)[0]
621
+ confident_mask = torch.ones_like(confident)
622
+ confident_mask[confident <= self.threshold] = float("-INF")
623
+ rtn = rtn * confident_mask
624
+ if self.confidence:
625
+ return rtn, confident
626
+ else:
627
+ return rtn
628
+
629
+ def cents_local_decoder(self, y, mask=True):
630
+ B, N, _ = y.size()
631
+ ci = self.cent_table[None, None, :].expand(B, N, -1)
632
+ confident, max_index = torch.max(y, dim=-1, keepdim=True)
633
+ local_argmax_index = torch.arange(0,9).to(max_index.device) + (max_index - 4)
634
+ local_argmax_index[local_argmax_index<0] = 0
635
+ local_argmax_index[local_argmax_index>=self.n_out] = self.n_out - 1
636
+ ci_l = torch.gather(ci,-1,local_argmax_index)
637
+ y_l = torch.gather(y,-1,local_argmax_index)
638
+ rtn = torch.sum(ci_l * y_l, dim=-1, keepdim=True) / torch.sum(y_l, dim=-1, keepdim=True) # cents: [B,N,1]
639
+ if mask:
640
+ confident_mask = torch.ones_like(confident)
641
+ confident_mask[confident <= self.threshold] = float("-INF")
642
+ rtn = rtn * confident_mask
643
+ if self.confidence:
644
+ return rtn, confident
645
+ else:
646
+ return rtn
647
+
648
+ def cent_to_f0(self, cent):
649
+ return 10. * 2 ** (cent / 1200.)
650
+
651
+ def f0_to_cent(self, f0):
652
+ return 1200. * torch.log2(f0 / 10.)
653
+
654
+ def gaussian_blurred_cent(self, cents): # cents: [B,N,1]
655
+ mask = (cents > 0.1) & (cents < (1200. * np.log2(self.f0_max / 10.)))
656
+ B, N, _ = cents.size()
657
+ ci = self.cent_table[None, None, :].expand(B, N, -1)
658
+ return torch.exp(-torch.square(ci - cents) / 1250) * mask.float()
659
+
660
+
661
+ class FCPEInfer:
662
+ def __init__(self, model_path, device=None, dtype=torch.float32):
663
+ if device is None:
664
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
665
+ self.device = device
666
+ ckpt = torch.load(model_path, map_location=torch.device(self.device))
667
+ self.args = DotDict(ckpt["config"])
668
+ self.dtype = dtype
669
+ model = FCPEModel(
670
+ input_channel=self.args.model.input_channel,
671
+ out_dims=self.args.model.out_dims,
672
+ n_layers=self.args.model.n_layers,
673
+ n_chans=self.args.model.n_chans,
674
+ use_siren=self.args.model.use_siren,
675
+ use_full=self.args.model.use_full,
676
+ loss_mse_scale=self.args.loss.loss_mse_scale,
677
+ loss_l2_regularization=self.args.loss.loss_l2_regularization,
678
+ loss_l2_regularization_scale=self.args.loss.loss_l2_regularization_scale,
679
+ loss_grad1_mse=self.args.loss.loss_grad1_mse,
680
+ loss_grad1_mse_scale=self.args.loss.loss_grad1_mse_scale,
681
+ f0_max=self.args.model.f0_max,
682
+ f0_min=self.args.model.f0_min,
683
+ confidence=self.args.model.confidence,
684
+ )
685
+ model.to(self.device).to(self.dtype)
686
+ model.load_state_dict(ckpt['model'])
687
+ model.eval()
688
+ self.model = model
689
+ self.wav2mel = Wav2Mel(self.args, dtype=self.dtype, device=self.device)
690
+
691
+ @torch.no_grad()
692
+ def __call__(self, audio, sr, threshold=0.05):
693
+ self.model.threshold = threshold
694
+ audio = audio[None,:]
695
+ mel = self.wav2mel(audio=audio, sample_rate=sr).to(self.dtype)
696
+ f0 = self.model(mel=mel, infer=True, return_hz_f0=True)
697
+ return f0
698
+
699
+
700
+ class Wav2Mel:
701
+
702
+ def __init__(self, args, device=None, dtype=torch.float32):
703
+ # self.args = args
704
+ self.sampling_rate = args.mel.sampling_rate
705
+ self.hop_size = args.mel.hop_size
706
+ if device is None:
707
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
708
+ self.device = device
709
+ self.dtype = dtype
710
+ self.stft = STFT(
711
+ args.mel.sampling_rate,
712
+ args.mel.num_mels,
713
+ args.mel.n_fft,
714
+ args.mel.win_size,
715
+ args.mel.hop_size,
716
+ args.mel.fmin,
717
+ args.mel.fmax
718
+ )
719
+ self.resample_kernel = {}
720
+
721
+ def extract_nvstft(self, audio, keyshift=0, train=False):
722
+ mel = self.stft.get_mel(audio, keyshift=keyshift, train=train).transpose(1, 2) # B, n_frames, bins
723
+ return mel
724
+
725
+ def extract_mel(self, audio, sample_rate, keyshift=0, train=False):
726
+ audio = audio.to(self.dtype).to(self.device)
727
+ # resample
728
+ if sample_rate == self.sampling_rate:
729
+ audio_res = audio
730
+ else:
731
+ key_str = str(sample_rate)
732
+ if key_str not in self.resample_kernel:
733
+ self.resample_kernel[key_str] = Resample(sample_rate, self.sampling_rate, lowpass_filter_width=128)
734
+ self.resample_kernel[key_str] = self.resample_kernel[key_str].to(self.dtype).to(self.device)
735
+ audio_res = self.resample_kernel[key_str](audio)
736
+
737
+ # extract
738
+ mel = self.extract_nvstft(audio_res, keyshift=keyshift, train=train) # B, n_frames, bins
739
+ n_frames = int(audio.shape[1] // self.hop_size) + 1
740
+ if n_frames > int(mel.shape[1]):
741
+ mel = torch.cat((mel, mel[:, -1:, :]), 1)
742
+ if n_frames < int(mel.shape[1]):
743
+ mel = mel[:, :n_frames, :]
744
+ return mel
745
+
746
+ def __call__(self, audio, sample_rate, keyshift=0, train=False):
747
+ return self.extract_mel(audio, sample_rate, keyshift=keyshift, train=train)
748
+
749
+
750
+ class DotDict(dict):
751
+ def __getattr__(*args):
752
+ val = dict.get(*args)
753
+ return DotDict(val) if type(val) is dict else val
754
+
755
+ __setattr__ = dict.__setitem__
756
+ __delattr__ = dict.__delitem__
757
+
758
+ class F0Predictor(object):
759
+ def compute_f0(self,wav,p_len):
760
+ '''
761
+ input: wav:[signal_length]
762
+ p_len:int
763
+ output: f0:[signal_length//hop_length]
764
+ '''
765
+ pass
766
+
767
+ def compute_f0_uv(self,wav,p_len):
768
+ '''
769
+ input: wav:[signal_length]
770
+ p_len:int
771
+ output: f0:[signal_length//hop_length],uv:[signal_length//hop_length]
772
+ '''
773
+ pass
774
+
775
+ class FCPE(F0Predictor):
776
+ def __init__(self, model_path, hop_length=512, f0_min=50, f0_max=1100, dtype=torch.float32, device=None, sampling_rate=44100,
777
+ threshold=0.05):
778
+ self.fcpe = FCPEInfer(model_path, device=device, dtype=dtype)
779
+ self.hop_length = hop_length
780
+ self.f0_min = f0_min
781
+ self.f0_max = f0_max
782
+ if device is None:
783
+ self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
784
+ else:
785
+ self.device = device
786
+ self.threshold = threshold
787
+ self.sampling_rate = sampling_rate
788
+ self.dtype = dtype
789
+ self.name = "fcpe"
790
+
791
+ def repeat_expand(
792
+ self, content: Union[torch.Tensor, np.ndarray], target_len: int, mode: str = "nearest"
793
+ ):
794
+ ndim = content.ndim
795
+
796
+ if content.ndim == 1:
797
+ content = content[None, None]
798
+ elif content.ndim == 2:
799
+ content = content[None]
800
+
801
+ assert content.ndim == 3
802
+
803
+ is_np = isinstance(content, np.ndarray)
804
+ if is_np:
805
+ content = torch.from_numpy(content)
806
+
807
+ results = torch.nn.functional.interpolate(content, size=target_len, mode=mode)
808
+
809
+ if is_np:
810
+ results = results.numpy()
811
+
812
+ if ndim == 1:
813
+ return results[0, 0]
814
+ elif ndim == 2:
815
+ return results[0]
816
+
817
+ def post_process(self, x, sampling_rate, f0, pad_to):
818
+ if isinstance(f0, np.ndarray):
819
+ f0 = torch.from_numpy(f0).float().to(x.device)
820
+
821
+ if pad_to is None:
822
+ return f0
823
+
824
+ f0 = self.repeat_expand(f0, pad_to)
825
+
826
+ vuv_vector = torch.zeros_like(f0)
827
+ vuv_vector[f0 > 0.0] = 1.0
828
+ vuv_vector[f0 <= 0.0] = 0.0
829
+
830
+ # 去掉0频率, 并线性插值
831
+ nzindex = torch.nonzero(f0).squeeze()
832
+ f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy()
833
+ time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy()
834
+ time_frame = np.arange(pad_to) * self.hop_length / sampling_rate
835
+
836
+ vuv_vector = F.interpolate(vuv_vector[None, None, :], size=pad_to)[0][0]
837
+
838
+ if f0.shape[0] <= 0:
839
+ return torch.zeros(pad_to, dtype=torch.float, device=x.device).cpu().numpy(), vuv_vector.cpu().numpy()
840
+ if f0.shape[0] == 1:
841
+ return (torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[
842
+ 0]).cpu().numpy(), vuv_vector.cpu().numpy()
843
+
844
+ # 大概可以用 torch 重写?
845
+ f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1])
846
+ # vuv_vector = np.ceil(scipy.ndimage.zoom(vuv_vector,pad_to/len(vuv_vector),order = 0))
847
+
848
+ return f0, vuv_vector.cpu().numpy()
849
+
850
+ def compute_f0(self, wav, p_len=None):
851
+ x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
852
+ if p_len is None:
853
+ print("fcpe p_len is None")
854
+ p_len = x.shape[0] // self.hop_length
855
+ #else:
856
+ # assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
857
+ f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)[0,:,0]
858
+ if torch.all(f0 == 0):
859
+ rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len)
860
+ return rtn, rtn
861
+ return self.post_process(x, self.sampling_rate, f0, p_len)[0]
862
+
863
+ def compute_f0_uv(self, wav, p_len=None):
864
+ x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
865
+ if p_len is None:
866
+ p_len = x.shape[0] // self.hop_length
867
+ #else:
868
+ # assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
869
+ f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)[0,:,0]
870
+ if torch.all(f0 == 0):
871
+ rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len)
872
+ return rtn, rtn
873
+ return self.post_process(x, self.sampling_rate, f0, p_len)
lib/infer_libs/infer_pack/attentions.py ADDED
@@ -0,0 +1,414 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch import nn
4
+ from torch.nn import functional as F
5
+
6
+ from lib.infer_libs.infer_pack import commons
7
+ from lib.infer_libs.infer_pack.modules import LayerNorm
8
+
9
+
10
+ class Encoder(nn.Module):
11
+ def __init__(
12
+ self,
13
+ hidden_channels,
14
+ filter_channels,
15
+ n_heads,
16
+ n_layers,
17
+ kernel_size=1,
18
+ p_dropout=0.0,
19
+ window_size=10,
20
+ **kwargs
21
+ ):
22
+ super().__init__()
23
+ self.hidden_channels = hidden_channels
24
+ self.filter_channels = filter_channels
25
+ self.n_heads = n_heads
26
+ self.n_layers = n_layers
27
+ self.kernel_size = kernel_size
28
+ self.p_dropout = p_dropout
29
+ self.window_size = window_size
30
+
31
+ self.drop = nn.Dropout(p_dropout)
32
+ self.attn_layers = nn.ModuleList()
33
+ self.norm_layers_1 = nn.ModuleList()
34
+ self.ffn_layers = nn.ModuleList()
35
+ self.norm_layers_2 = nn.ModuleList()
36
+ for i in range(self.n_layers):
37
+ self.attn_layers.append(
38
+ MultiHeadAttention(
39
+ hidden_channels,
40
+ hidden_channels,
41
+ n_heads,
42
+ p_dropout=p_dropout,
43
+ window_size=window_size,
44
+ )
45
+ )
46
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
47
+ self.ffn_layers.append(
48
+ FFN(
49
+ hidden_channels,
50
+ hidden_channels,
51
+ filter_channels,
52
+ kernel_size,
53
+ p_dropout=p_dropout,
54
+ )
55
+ )
56
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
57
+
58
+ def forward(self, x, x_mask):
59
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
60
+ x = x * x_mask
61
+ for i in range(self.n_layers):
62
+ y = self.attn_layers[i](x, x, attn_mask)
63
+ y = self.drop(y)
64
+ x = self.norm_layers_1[i](x + y)
65
+
66
+ y = self.ffn_layers[i](x, x_mask)
67
+ y = self.drop(y)
68
+ x = self.norm_layers_2[i](x + y)
69
+ x = x * x_mask
70
+ return x
71
+
72
+
73
+ class Decoder(nn.Module):
74
+ def __init__(
75
+ self,
76
+ hidden_channels,
77
+ filter_channels,
78
+ n_heads,
79
+ n_layers,
80
+ kernel_size=1,
81
+ p_dropout=0.0,
82
+ proximal_bias=False,
83
+ proximal_init=True,
84
+ **kwargs
85
+ ):
86
+ super().__init__()
87
+ self.hidden_channels = hidden_channels
88
+ self.filter_channels = filter_channels
89
+ self.n_heads = n_heads
90
+ self.n_layers = n_layers
91
+ self.kernel_size = kernel_size
92
+ self.p_dropout = p_dropout
93
+ self.proximal_bias = proximal_bias
94
+ self.proximal_init = proximal_init
95
+
96
+ self.drop = nn.Dropout(p_dropout)
97
+ self.self_attn_layers = nn.ModuleList()
98
+ self.norm_layers_0 = nn.ModuleList()
99
+ self.encdec_attn_layers = nn.ModuleList()
100
+ self.norm_layers_1 = nn.ModuleList()
101
+ self.ffn_layers = nn.ModuleList()
102
+ self.norm_layers_2 = nn.ModuleList()
103
+ for i in range(self.n_layers):
104
+ self.self_attn_layers.append(
105
+ MultiHeadAttention(
106
+ hidden_channels,
107
+ hidden_channels,
108
+ n_heads,
109
+ p_dropout=p_dropout,
110
+ proximal_bias=proximal_bias,
111
+ proximal_init=proximal_init,
112
+ )
113
+ )
114
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
115
+ self.encdec_attn_layers.append(
116
+ MultiHeadAttention(
117
+ hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
118
+ )
119
+ )
120
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
121
+ self.ffn_layers.append(
122
+ FFN(
123
+ hidden_channels,
124
+ hidden_channels,
125
+ filter_channels,
126
+ kernel_size,
127
+ p_dropout=p_dropout,
128
+ causal=True,
129
+ )
130
+ )
131
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
132
+
133
+ def forward(self, x, x_mask, h, h_mask):
134
+ """
135
+ x: decoder input
136
+ h: encoder output
137
+ """
138
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
139
+ device=x.device, dtype=x.dtype
140
+ )
141
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
142
+ x = x * x_mask
143
+ for i in range(self.n_layers):
144
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
145
+ y = self.drop(y)
146
+ x = self.norm_layers_0[i](x + y)
147
+
148
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
149
+ y = self.drop(y)
150
+ x = self.norm_layers_1[i](x + y)
151
+
152
+ y = self.ffn_layers[i](x, x_mask)
153
+ y = self.drop(y)
154
+ x = self.norm_layers_2[i](x + y)
155
+ x = x * x_mask
156
+ return x
157
+
158
+
159
+ class MultiHeadAttention(nn.Module):
160
+ def __init__(
161
+ self,
162
+ channels,
163
+ out_channels,
164
+ n_heads,
165
+ p_dropout=0.0,
166
+ window_size=None,
167
+ heads_share=True,
168
+ block_length=None,
169
+ proximal_bias=False,
170
+ proximal_init=False,
171
+ ):
172
+ super().__init__()
173
+ assert channels % n_heads == 0
174
+
175
+ self.channels = channels
176
+ self.out_channels = out_channels
177
+ self.n_heads = n_heads
178
+ self.p_dropout = p_dropout
179
+ self.window_size = window_size
180
+ self.heads_share = heads_share
181
+ self.block_length = block_length
182
+ self.proximal_bias = proximal_bias
183
+ self.proximal_init = proximal_init
184
+ self.attn = None
185
+
186
+ self.k_channels = channels // n_heads
187
+ self.conv_q = nn.Conv1d(channels, channels, 1)
188
+ self.conv_k = nn.Conv1d(channels, channels, 1)
189
+ self.conv_v = nn.Conv1d(channels, channels, 1)
190
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
191
+ self.drop = nn.Dropout(p_dropout)
192
+
193
+ if window_size is not None:
194
+ n_heads_rel = 1 if heads_share else n_heads
195
+ rel_stddev = self.k_channels**-0.5
196
+ self.emb_rel_k = nn.Parameter(
197
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
198
+ * rel_stddev
199
+ )
200
+ self.emb_rel_v = nn.Parameter(
201
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
202
+ * rel_stddev
203
+ )
204
+
205
+ nn.init.xavier_uniform_(self.conv_q.weight)
206
+ nn.init.xavier_uniform_(self.conv_k.weight)
207
+ nn.init.xavier_uniform_(self.conv_v.weight)
208
+ if proximal_init:
209
+ with torch.no_grad():
210
+ self.conv_k.weight.copy_(self.conv_q.weight)
211
+ self.conv_k.bias.copy_(self.conv_q.bias)
212
+
213
+ def forward(self, x, c, attn_mask=None):
214
+ q = self.conv_q(x)
215
+ k = self.conv_k(c)
216
+ v = self.conv_v(c)
217
+
218
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
219
+
220
+ x = self.conv_o(x)
221
+ return x
222
+
223
+ def attention(self, query, key, value, mask=None):
224
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
225
+ b, d, t_s, t_t = (*key.size(), query.size(2))
226
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
227
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
228
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
229
+
230
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
231
+ if self.window_size is not None:
232
+ assert (
233
+ t_s == t_t
234
+ ), "Relative attention is only available for self-attention."
235
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
236
+ rel_logits = self._matmul_with_relative_keys(
237
+ query / math.sqrt(self.k_channels), key_relative_embeddings
238
+ )
239
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
240
+ scores = scores + scores_local
241
+ if self.proximal_bias:
242
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
243
+ scores = scores + self._attention_bias_proximal(t_s).to(
244
+ device=scores.device, dtype=scores.dtype
245
+ )
246
+ if mask is not None:
247
+ scores = scores.masked_fill(mask == 0, -1e4)
248
+ if self.block_length is not None:
249
+ assert (
250
+ t_s == t_t
251
+ ), "Local attention is only available for self-attention."
252
+ block_mask = (
253
+ torch.ones_like(scores)
254
+ .triu(-self.block_length)
255
+ .tril(self.block_length)
256
+ )
257
+ scores = scores.masked_fill(block_mask == 0, -1e4)
258
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
259
+ p_attn = self.drop(p_attn)
260
+ output = torch.matmul(p_attn, value)
261
+ if self.window_size is not None:
262
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
263
+ value_relative_embeddings = self._get_relative_embeddings(
264
+ self.emb_rel_v, t_s
265
+ )
266
+ output = output + self._matmul_with_relative_values(
267
+ relative_weights, value_relative_embeddings
268
+ )
269
+ output = (
270
+ output.transpose(2, 3).contiguous().view(b, d, t_t)
271
+ ) # [b, n_h, t_t, d_k] -> [b, d, t_t]
272
+ return output, p_attn
273
+
274
+ def _matmul_with_relative_values(self, x, y):
275
+ """
276
+ x: [b, h, l, m]
277
+ y: [h or 1, m, d]
278
+ ret: [b, h, l, d]
279
+ """
280
+ ret = torch.matmul(x, y.unsqueeze(0))
281
+ return ret
282
+
283
+ def _matmul_with_relative_keys(self, x, y):
284
+ """
285
+ x: [b, h, l, d]
286
+ y: [h or 1, m, d]
287
+ ret: [b, h, l, m]
288
+ """
289
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
290
+ return ret
291
+
292
+ def _get_relative_embeddings(self, relative_embeddings, length):
293
+ max_relative_position = 2 * self.window_size + 1
294
+ # Pad first before slice to avoid using cond ops.
295
+ pad_length = max(length - (self.window_size + 1), 0)
296
+ slice_start_position = max((self.window_size + 1) - length, 0)
297
+ slice_end_position = slice_start_position + 2 * length - 1
298
+ if pad_length > 0:
299
+ padded_relative_embeddings = F.pad(
300
+ relative_embeddings,
301
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
302
+ )
303
+ else:
304
+ padded_relative_embeddings = relative_embeddings
305
+ used_relative_embeddings = padded_relative_embeddings[
306
+ :, slice_start_position:slice_end_position
307
+ ]
308
+ return used_relative_embeddings
309
+
310
+ def _relative_position_to_absolute_position(self, x):
311
+ """
312
+ x: [b, h, l, 2*l-1]
313
+ ret: [b, h, l, l]
314
+ """
315
+ batch, heads, length, _ = x.size()
316
+ # Concat columns of pad to shift from relative to absolute indexing.
317
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
318
+
319
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
320
+ x_flat = x.view([batch, heads, length * 2 * length])
321
+ x_flat = F.pad(
322
+ x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
323
+ )
324
+
325
+ # Reshape and slice out the padded elements.
326
+ x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
327
+ :, :, :length, length - 1 :
328
+ ]
329
+ return x_final
330
+
331
+ def _absolute_position_to_relative_position(self, x):
332
+ """
333
+ x: [b, h, l, l]
334
+ ret: [b, h, l, 2*l-1]
335
+ """
336
+ batch, heads, length, _ = x.size()
337
+ # padd along column
338
+ x = F.pad(
339
+ x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
340
+ )
341
+ x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
342
+ # add 0's in the beginning that will skew the elements after reshape
343
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
344
+ x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
345
+ return x_final
346
+
347
+ def _attention_bias_proximal(self, length):
348
+ """Bias for self-attention to encourage attention to close positions.
349
+ Args:
350
+ length: an integer scalar.
351
+ Returns:
352
+ a Tensor with shape [1, 1, length, length]
353
+ """
354
+ r = torch.arange(length, dtype=torch.float32)
355
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
356
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
357
+
358
+
359
+ class FFN(nn.Module):
360
+ def __init__(
361
+ self,
362
+ in_channels,
363
+ out_channels,
364
+ filter_channels,
365
+ kernel_size,
366
+ p_dropout=0.0,
367
+ activation=None,
368
+ causal=False,
369
+ ):
370
+ super().__init__()
371
+ self.in_channels = in_channels
372
+ self.out_channels = out_channels
373
+ self.filter_channels = filter_channels
374
+ self.kernel_size = kernel_size
375
+ self.p_dropout = p_dropout
376
+ self.activation = activation
377
+ self.causal = causal
378
+
379
+ if causal:
380
+ self.padding = self._causal_padding
381
+ else:
382
+ self.padding = self._same_padding
383
+
384
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
385
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
386
+ self.drop = nn.Dropout(p_dropout)
387
+
388
+ def forward(self, x, x_mask):
389
+ x = self.conv_1(self.padding(x * x_mask))
390
+ if self.activation == "gelu":
391
+ x = x * torch.sigmoid(1.702 * x)
392
+ else:
393
+ x = torch.relu(x)
394
+ x = self.drop(x)
395
+ x = self.conv_2(self.padding(x * x_mask))
396
+ return x * x_mask
397
+
398
+ def _causal_padding(self, x):
399
+ if self.kernel_size == 1:
400
+ return x
401
+ pad_l = self.kernel_size - 1
402
+ pad_r = 0
403
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
404
+ x = F.pad(x, commons.convert_pad_shape(padding))
405
+ return x
406
+
407
+ def _same_padding(self, x):
408
+ if self.kernel_size == 1:
409
+ return x
410
+ pad_l = (self.kernel_size - 1) // 2
411
+ pad_r = self.kernel_size // 2
412
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
413
+ x = F.pad(x, commons.convert_pad_shape(padding))
414
+ return x
lib/infer_libs/infer_pack/commons.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch.nn import functional as F
4
+
5
+
6
+ def init_weights(m, mean=0.0, std=0.01):
7
+ classname = m.__class__.__name__
8
+ if classname.find("Conv") != -1:
9
+ m.weight.data.normal_(mean, std)
10
+
11
+
12
+ def get_padding(kernel_size, dilation=1):
13
+ return int((kernel_size * dilation - dilation) / 2)
14
+
15
+
16
+ def convert_pad_shape(pad_shape):
17
+ l = pad_shape[::-1]
18
+ pad_shape = [item for sublist in l for item in sublist]
19
+ return pad_shape
20
+
21
+
22
+ def kl_divergence(m_p, logs_p, m_q, logs_q):
23
+ """KL(P||Q)"""
24
+ kl = (logs_q - logs_p) - 0.5
25
+ kl += (
26
+ 0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
27
+ )
28
+ return kl
29
+
30
+
31
+ def rand_gumbel(shape):
32
+ """Sample from the Gumbel distribution, protect from overflows."""
33
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
34
+ return -torch.log(-torch.log(uniform_samples))
35
+
36
+
37
+ def rand_gumbel_like(x):
38
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
39
+ return g
40
+
41
+
42
+ def slice_segments(x, ids_str, segment_size=4):
43
+ ret = torch.zeros_like(x[:, :, :segment_size])
44
+ for i in range(x.size(0)):
45
+ idx_str = ids_str[i]
46
+ idx_end = idx_str + segment_size
47
+ ret[i] = x[i, :, idx_str:idx_end]
48
+ return ret
49
+
50
+
51
+ def slice_segments2(x, ids_str, segment_size=4):
52
+ ret = torch.zeros_like(x[:, :segment_size])
53
+ for i in range(x.size(0)):
54
+ idx_str = ids_str[i]
55
+ idx_end = idx_str + segment_size
56
+ ret[i] = x[i, idx_str:idx_end]
57
+ return ret
58
+
59
+
60
+ def rand_slice_segments(x, x_lengths=None, segment_size=4):
61
+ b, d, t = x.size()
62
+ if x_lengths is None:
63
+ x_lengths = t
64
+ ids_str_max = x_lengths - segment_size + 1
65
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
66
+ ret = slice_segments(x, ids_str, segment_size)
67
+ return ret, ids_str
68
+
69
+
70
+ def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
71
+ position = torch.arange(length, dtype=torch.float)
72
+ num_timescales = channels // 2
73
+ log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
74
+ num_timescales - 1
75
+ )
76
+ inv_timescales = min_timescale * torch.exp(
77
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
78
+ )
79
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
80
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
81
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
82
+ signal = signal.view(1, channels, length)
83
+ return signal
84
+
85
+
86
+ def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
87
+ b, channels, length = x.size()
88
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
89
+ return x + signal.to(dtype=x.dtype, device=x.device)
90
+
91
+
92
+ def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
93
+ b, channels, length = x.size()
94
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
95
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
96
+
97
+
98
+ def subsequent_mask(length):
99
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
100
+ return mask
101
+
102
+
103
+ @torch.jit.script
104
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
105
+ n_channels_int = n_channels[0]
106
+ in_act = input_a + input_b
107
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
108
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
109
+ acts = t_act * s_act
110
+ return acts
111
+
112
+
113
+ def convert_pad_shape(pad_shape):
114
+ l = pad_shape[::-1]
115
+ pad_shape = [item for sublist in l for item in sublist]
116
+ return pad_shape
117
+
118
+
119
+ def shift_1d(x):
120
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
121
+ return x
122
+
123
+
124
+ def sequence_mask(length, max_length=None):
125
+ if max_length is None:
126
+ max_length = length.max()
127
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
128
+ return x.unsqueeze(0) < length.unsqueeze(1)
129
+
130
+
131
+ def generate_path(duration, mask):
132
+ """
133
+ duration: [b, 1, t_x]
134
+ mask: [b, 1, t_y, t_x]
135
+ """
136
+ device = duration.device
137
+
138
+ b, _, t_y, t_x = mask.shape
139
+ cum_duration = torch.cumsum(duration, -1)
140
+
141
+ cum_duration_flat = cum_duration.view(b * t_x)
142
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
143
+ path = path.view(b, t_x, t_y)
144
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
145
+ path = path.unsqueeze(1).transpose(2, 3) * mask
146
+ return path
147
+
148
+
149
+ def clip_grad_value_(parameters, clip_value, norm_type=2):
150
+ if isinstance(parameters, torch.Tensor):
151
+ parameters = [parameters]
152
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
153
+ norm_type = float(norm_type)
154
+ if clip_value is not None:
155
+ clip_value = float(clip_value)
156
+
157
+ total_norm = 0
158
+ for p in parameters:
159
+ param_norm = p.grad.data.norm(norm_type)
160
+ total_norm += param_norm.item() ** norm_type
161
+ if clip_value is not None:
162
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
163
+ total_norm = total_norm ** (1.0 / norm_type)
164
+ return total_norm
lib/infer_libs/infer_pack/models.py ADDED
@@ -0,0 +1,1174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import logging
3
+
4
+ logger = logging.getLogger(__name__)
5
+
6
+ import numpy as np
7
+ import torch
8
+ from torch import nn
9
+ from torch.nn import Conv1d, Conv2d, ConvTranspose1d
10
+ from torch.nn import functional as F
11
+ from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
12
+
13
+ from lib.infer_libs.infer_pack import attentions, commons, modules
14
+ from lib.infer_libs.infer_pack.commons import get_padding, init_weights
15
+ has_xpu = bool(hasattr(torch, "xpu") and torch.xpu.is_available())
16
+
17
+ class TextEncoder256(nn.Module):
18
+ def __init__(
19
+ self,
20
+ out_channels,
21
+ hidden_channels,
22
+ filter_channels,
23
+ n_heads,
24
+ n_layers,
25
+ kernel_size,
26
+ p_dropout,
27
+ f0=True,
28
+ ):
29
+ super().__init__()
30
+ self.out_channels = out_channels
31
+ self.hidden_channels = hidden_channels
32
+ self.filter_channels = filter_channels
33
+ self.n_heads = n_heads
34
+ self.n_layers = n_layers
35
+ self.kernel_size = kernel_size
36
+ self.p_dropout = p_dropout
37
+ self.emb_phone = nn.Linear(256, hidden_channels)
38
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
39
+ if f0 == True:
40
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
41
+ self.encoder = attentions.Encoder(
42
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
43
+ )
44
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
45
+
46
+ def forward(self, phone, pitch, lengths):
47
+ if pitch == None:
48
+ x = self.emb_phone(phone)
49
+ else:
50
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
51
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
52
+ x = self.lrelu(x)
53
+ x = torch.transpose(x, 1, -1) # [b, h, t]
54
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
55
+ x.dtype
56
+ )
57
+ x = self.encoder(x * x_mask, x_mask)
58
+ stats = self.proj(x) * x_mask
59
+
60
+ m, logs = torch.split(stats, self.out_channels, dim=1)
61
+ return m, logs, x_mask
62
+
63
+
64
+ class TextEncoder768(nn.Module):
65
+ def __init__(
66
+ self,
67
+ out_channels,
68
+ hidden_channels,
69
+ filter_channels,
70
+ n_heads,
71
+ n_layers,
72
+ kernel_size,
73
+ p_dropout,
74
+ f0=True,
75
+ ):
76
+ super().__init__()
77
+ self.out_channels = out_channels
78
+ self.hidden_channels = hidden_channels
79
+ self.filter_channels = filter_channels
80
+ self.n_heads = n_heads
81
+ self.n_layers = n_layers
82
+ self.kernel_size = kernel_size
83
+ self.p_dropout = p_dropout
84
+ self.emb_phone = nn.Linear(768, hidden_channels)
85
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
86
+ if f0 == True:
87
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
88
+ self.encoder = attentions.Encoder(
89
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
90
+ )
91
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
92
+
93
+ def forward(self, phone, pitch, lengths):
94
+ if pitch == None:
95
+ x = self.emb_phone(phone)
96
+ else:
97
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
98
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
99
+ x = self.lrelu(x)
100
+ x = torch.transpose(x, 1, -1) # [b, h, t]
101
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
102
+ x.dtype
103
+ )
104
+ x = self.encoder(x * x_mask, x_mask)
105
+ stats = self.proj(x) * x_mask
106
+
107
+ m, logs = torch.split(stats, self.out_channels, dim=1)
108
+ return m, logs, x_mask
109
+
110
+
111
+ class ResidualCouplingBlock(nn.Module):
112
+ def __init__(
113
+ self,
114
+ channels,
115
+ hidden_channels,
116
+ kernel_size,
117
+ dilation_rate,
118
+ n_layers,
119
+ n_flows=4,
120
+ gin_channels=0,
121
+ ):
122
+ super().__init__()
123
+ self.channels = channels
124
+ self.hidden_channels = hidden_channels
125
+ self.kernel_size = kernel_size
126
+ self.dilation_rate = dilation_rate
127
+ self.n_layers = n_layers
128
+ self.n_flows = n_flows
129
+ self.gin_channels = gin_channels
130
+
131
+ self.flows = nn.ModuleList()
132
+ for i in range(n_flows):
133
+ self.flows.append(
134
+ modules.ResidualCouplingLayer(
135
+ channels,
136
+ hidden_channels,
137
+ kernel_size,
138
+ dilation_rate,
139
+ n_layers,
140
+ gin_channels=gin_channels,
141
+ mean_only=True,
142
+ )
143
+ )
144
+ self.flows.append(modules.Flip())
145
+
146
+ def forward(self, x, x_mask, g=None, reverse=False):
147
+ if not reverse:
148
+ for flow in self.flows:
149
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
150
+ else:
151
+ for flow in reversed(self.flows):
152
+ x = flow(x, x_mask, g=g, reverse=reverse)
153
+ return x
154
+
155
+ def remove_weight_norm(self):
156
+ for i in range(self.n_flows):
157
+ self.flows[i * 2].remove_weight_norm()
158
+
159
+
160
+ class PosteriorEncoder(nn.Module):
161
+ def __init__(
162
+ self,
163
+ in_channels,
164
+ out_channels,
165
+ hidden_channels,
166
+ kernel_size,
167
+ dilation_rate,
168
+ n_layers,
169
+ gin_channels=0,
170
+ ):
171
+ super().__init__()
172
+ self.in_channels = in_channels
173
+ self.out_channels = out_channels
174
+ self.hidden_channels = hidden_channels
175
+ self.kernel_size = kernel_size
176
+ self.dilation_rate = dilation_rate
177
+ self.n_layers = n_layers
178
+ self.gin_channels = gin_channels
179
+
180
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
181
+ self.enc = modules.WN(
182
+ hidden_channels,
183
+ kernel_size,
184
+ dilation_rate,
185
+ n_layers,
186
+ gin_channels=gin_channels,
187
+ )
188
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
189
+
190
+ def forward(self, x, x_lengths, g=None):
191
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
192
+ x.dtype
193
+ )
194
+ x = self.pre(x) * x_mask
195
+ x = self.enc(x, x_mask, g=g)
196
+ stats = self.proj(x) * x_mask
197
+ m, logs = torch.split(stats, self.out_channels, dim=1)
198
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
199
+ return z, m, logs, x_mask
200
+
201
+ def remove_weight_norm(self):
202
+ self.enc.remove_weight_norm()
203
+
204
+
205
+ class Generator(torch.nn.Module):
206
+ def __init__(
207
+ self,
208
+ initial_channel,
209
+ resblock,
210
+ resblock_kernel_sizes,
211
+ resblock_dilation_sizes,
212
+ upsample_rates,
213
+ upsample_initial_channel,
214
+ upsample_kernel_sizes,
215
+ gin_channels=0,
216
+ ):
217
+ super(Generator, self).__init__()
218
+ self.num_kernels = len(resblock_kernel_sizes)
219
+ self.num_upsamples = len(upsample_rates)
220
+ self.conv_pre = Conv1d(
221
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
222
+ )
223
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
224
+
225
+ self.ups = nn.ModuleList()
226
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
227
+ self.ups.append(
228
+ weight_norm(
229
+ ConvTranspose1d(
230
+ upsample_initial_channel // (2**i),
231
+ upsample_initial_channel // (2 ** (i + 1)),
232
+ k,
233
+ u,
234
+ padding=(k - u) // 2,
235
+ )
236
+ )
237
+ )
238
+
239
+ self.resblocks = nn.ModuleList()
240
+ for i in range(len(self.ups)):
241
+ ch = upsample_initial_channel // (2 ** (i + 1))
242
+ for j, (k, d) in enumerate(
243
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
244
+ ):
245
+ self.resblocks.append(resblock(ch, k, d))
246
+
247
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
248
+ self.ups.apply(init_weights)
249
+
250
+ if gin_channels != 0:
251
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
252
+
253
+ def forward(self, x, g=None):
254
+ x = self.conv_pre(x)
255
+ if g is not None:
256
+ x = x + self.cond(g)
257
+
258
+ for i in range(self.num_upsamples):
259
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
260
+ x = self.ups[i](x)
261
+ xs = None
262
+ for j in range(self.num_kernels):
263
+ if xs is None:
264
+ xs = self.resblocks[i * self.num_kernels + j](x)
265
+ else:
266
+ xs += self.resblocks[i * self.num_kernels + j](x)
267
+ x = xs / self.num_kernels
268
+ x = F.leaky_relu(x)
269
+ x = self.conv_post(x)
270
+ x = torch.tanh(x)
271
+
272
+ return x
273
+
274
+ def remove_weight_norm(self):
275
+ for l in self.ups:
276
+ remove_weight_norm(l)
277
+ for l in self.resblocks:
278
+ l.remove_weight_norm()
279
+
280
+
281
+ class SineGen(torch.nn.Module):
282
+ """Definition of sine generator
283
+ SineGen(samp_rate, harmonic_num = 0,
284
+ sine_amp = 0.1, noise_std = 0.003,
285
+ voiced_threshold = 0,
286
+ flag_for_pulse=False)
287
+ samp_rate: sampling rate in Hz
288
+ harmonic_num: number of harmonic overtones (default 0)
289
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
290
+ noise_std: std of Gaussian noise (default 0.003)
291
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
292
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
293
+ Note: when flag_for_pulse is True, the first time step of a voiced
294
+ segment is always sin(np.pi) or cos(0)
295
+ """
296
+
297
+ def __init__(
298
+ self,
299
+ samp_rate,
300
+ harmonic_num=0,
301
+ sine_amp=0.1,
302
+ noise_std=0.003,
303
+ voiced_threshold=0,
304
+ flag_for_pulse=False,
305
+ ):
306
+ super(SineGen, self).__init__()
307
+ self.sine_amp = sine_amp
308
+ self.noise_std = noise_std
309
+ self.harmonic_num = harmonic_num
310
+ self.dim = self.harmonic_num + 1
311
+ self.sampling_rate = samp_rate
312
+ self.voiced_threshold = voiced_threshold
313
+
314
+ def _f02uv(self, f0):
315
+ # generate uv signal
316
+ uv = torch.ones_like(f0)
317
+ uv = uv * (f0 > self.voiced_threshold)
318
+ if uv.device.type == "privateuseone": # for DirectML
319
+ uv = uv.float()
320
+ return uv
321
+
322
+ def forward(self, f0, upp):
323
+ """sine_tensor, uv = forward(f0)
324
+ input F0: tensor(batchsize=1, length, dim=1)
325
+ f0 for unvoiced steps should be 0
326
+ output sine_tensor: tensor(batchsize=1, length, dim)
327
+ output uv: tensor(batchsize=1, length, 1)
328
+ """
329
+ with torch.no_grad():
330
+ f0 = f0[:, None].transpose(1, 2)
331
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
332
+ # fundamental component
333
+ f0_buf[:, :, 0] = f0[:, :, 0]
334
+ for idx in np.arange(self.harmonic_num):
335
+ f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
336
+ idx + 2
337
+ ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
338
+ rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
339
+ rand_ini = torch.rand(
340
+ f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
341
+ )
342
+ rand_ini[:, 0] = 0
343
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
344
+ tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
345
+ tmp_over_one *= upp
346
+ tmp_over_one = F.interpolate(
347
+ tmp_over_one.transpose(2, 1),
348
+ scale_factor=upp,
349
+ mode="linear",
350
+ align_corners=True,
351
+ ).transpose(2, 1)
352
+ rad_values = F.interpolate(
353
+ rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
354
+ ).transpose(
355
+ 2, 1
356
+ ) #######
357
+ tmp_over_one %= 1
358
+ tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
359
+ cumsum_shift = torch.zeros_like(rad_values)
360
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
361
+ sine_waves = torch.sin(
362
+ torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
363
+ )
364
+ sine_waves = sine_waves * self.sine_amp
365
+ uv = self._f02uv(f0)
366
+ uv = F.interpolate(
367
+ uv.transpose(2, 1), scale_factor=upp, mode="nearest"
368
+ ).transpose(2, 1)
369
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
370
+ noise = noise_amp * torch.randn_like(sine_waves)
371
+ sine_waves = sine_waves * uv + noise
372
+ return sine_waves, uv, noise
373
+
374
+
375
+ class SourceModuleHnNSF(torch.nn.Module):
376
+ """SourceModule for hn-nsf
377
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
378
+ add_noise_std=0.003, voiced_threshod=0)
379
+ sampling_rate: sampling_rate in Hz
380
+ harmonic_num: number of harmonic above F0 (default: 0)
381
+ sine_amp: amplitude of sine source signal (default: 0.1)
382
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
383
+ note that amplitude of noise in unvoiced is decided
384
+ by sine_amp
385
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
386
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
387
+ F0_sampled (batchsize, length, 1)
388
+ Sine_source (batchsize, length, 1)
389
+ noise_source (batchsize, length 1)
390
+ uv (batchsize, length, 1)
391
+ """
392
+
393
+ def __init__(
394
+ self,
395
+ sampling_rate,
396
+ harmonic_num=0,
397
+ sine_amp=0.1,
398
+ add_noise_std=0.003,
399
+ voiced_threshod=0,
400
+ is_half=True,
401
+ ):
402
+ super(SourceModuleHnNSF, self).__init__()
403
+
404
+ self.sine_amp = sine_amp
405
+ self.noise_std = add_noise_std
406
+ self.is_half = is_half
407
+ # to produce sine waveforms
408
+ self.l_sin_gen = SineGen(
409
+ sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
410
+ )
411
+
412
+ # to merge source harmonics into a single excitation
413
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
414
+ self.l_tanh = torch.nn.Tanh()
415
+
416
+ def forward(self, x, upp=None):
417
+ if hasattr(self, "ddtype") == False:
418
+ self.ddtype = self.l_linear.weight.dtype
419
+ sine_wavs, uv, _ = self.l_sin_gen(x, upp)
420
+ # print(x.dtype,sine_wavs.dtype,self.l_linear.weight.dtype)
421
+ # if self.is_half:
422
+ # sine_wavs = sine_wavs.half()
423
+ # sine_merge = self.l_tanh(self.l_linear(sine_wavs.to(x)))
424
+ # print(sine_wavs.dtype,self.ddtype)
425
+ if sine_wavs.dtype != self.ddtype:
426
+ sine_wavs = sine_wavs.to(self.ddtype)
427
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
428
+ return sine_merge, None, None # noise, uv
429
+
430
+
431
+ class GeneratorNSF(torch.nn.Module):
432
+ def __init__(
433
+ self,
434
+ initial_channel,
435
+ resblock,
436
+ resblock_kernel_sizes,
437
+ resblock_dilation_sizes,
438
+ upsample_rates,
439
+ upsample_initial_channel,
440
+ upsample_kernel_sizes,
441
+ gin_channels,
442
+ sr,
443
+ is_half=False,
444
+ ):
445
+ super(GeneratorNSF, self).__init__()
446
+ self.num_kernels = len(resblock_kernel_sizes)
447
+ self.num_upsamples = len(upsample_rates)
448
+
449
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
450
+ self.m_source = SourceModuleHnNSF(
451
+ sampling_rate=sr, harmonic_num=0, is_half=is_half
452
+ )
453
+ self.noise_convs = nn.ModuleList()
454
+ self.conv_pre = Conv1d(
455
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
456
+ )
457
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
458
+
459
+ self.ups = nn.ModuleList()
460
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
461
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
462
+ self.ups.append(
463
+ weight_norm(
464
+ ConvTranspose1d(
465
+ upsample_initial_channel // (2**i),
466
+ upsample_initial_channel // (2 ** (i + 1)),
467
+ k,
468
+ u,
469
+ padding=(k - u) // 2,
470
+ )
471
+ )
472
+ )
473
+ if i + 1 < len(upsample_rates):
474
+ stride_f0 = np.prod(upsample_rates[i + 1 :])
475
+ self.noise_convs.append(
476
+ Conv1d(
477
+ 1,
478
+ c_cur,
479
+ kernel_size=stride_f0 * 2,
480
+ stride=stride_f0,
481
+ padding=stride_f0 // 2,
482
+ )
483
+ )
484
+ else:
485
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
486
+
487
+ self.resblocks = nn.ModuleList()
488
+ for i in range(len(self.ups)):
489
+ ch = upsample_initial_channel // (2 ** (i + 1))
490
+ for j, (k, d) in enumerate(
491
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
492
+ ):
493
+ self.resblocks.append(resblock(ch, k, d))
494
+
495
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
496
+ self.ups.apply(init_weights)
497
+
498
+ if gin_channels != 0:
499
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
500
+
501
+ self.upp = np.prod(upsample_rates)
502
+
503
+ def forward(self, x, f0, g=None):
504
+ har_source, noi_source, uv = self.m_source(f0, self.upp)
505
+ har_source = har_source.transpose(1, 2)
506
+ x = self.conv_pre(x)
507
+ if g is not None:
508
+ x = x + self.cond(g)
509
+
510
+ for i in range(self.num_upsamples):
511
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
512
+ x = self.ups[i](x)
513
+ x_source = self.noise_convs[i](har_source)
514
+ x = x + x_source
515
+ xs = None
516
+ for j in range(self.num_kernels):
517
+ if xs is None:
518
+ xs = self.resblocks[i * self.num_kernels + j](x)
519
+ else:
520
+ xs += self.resblocks[i * self.num_kernels + j](x)
521
+ x = xs / self.num_kernels
522
+ x = F.leaky_relu(x)
523
+ x = self.conv_post(x)
524
+ x = torch.tanh(x)
525
+ return x
526
+
527
+ def remove_weight_norm(self):
528
+ for l in self.ups:
529
+ remove_weight_norm(l)
530
+ for l in self.resblocks:
531
+ l.remove_weight_norm()
532
+
533
+
534
+ sr2sr = {
535
+ "32k": 32000,
536
+ "40k": 40000,
537
+ "48k": 48000,
538
+ }
539
+
540
+
541
+ class SynthesizerTrnMs256NSFsid(nn.Module):
542
+ def __init__(
543
+ self,
544
+ spec_channels,
545
+ segment_size,
546
+ inter_channels,
547
+ hidden_channels,
548
+ filter_channels,
549
+ n_heads,
550
+ n_layers,
551
+ kernel_size,
552
+ p_dropout,
553
+ resblock,
554
+ resblock_kernel_sizes,
555
+ resblock_dilation_sizes,
556
+ upsample_rates,
557
+ upsample_initial_channel,
558
+ upsample_kernel_sizes,
559
+ spk_embed_dim,
560
+ gin_channels,
561
+ sr,
562
+ **kwargs
563
+ ):
564
+ super().__init__()
565
+ if type(sr) == type("strr"):
566
+ sr = sr2sr[sr]
567
+ self.spec_channels = spec_channels
568
+ self.inter_channels = inter_channels
569
+ self.hidden_channels = hidden_channels
570
+ self.filter_channels = filter_channels
571
+ self.n_heads = n_heads
572
+ self.n_layers = n_layers
573
+ self.kernel_size = kernel_size
574
+ self.p_dropout = p_dropout
575
+ self.resblock = resblock
576
+ self.resblock_kernel_sizes = resblock_kernel_sizes
577
+ self.resblock_dilation_sizes = resblock_dilation_sizes
578
+ self.upsample_rates = upsample_rates
579
+ self.upsample_initial_channel = upsample_initial_channel
580
+ self.upsample_kernel_sizes = upsample_kernel_sizes
581
+ self.segment_size = segment_size
582
+ self.gin_channels = gin_channels
583
+ # self.hop_length = hop_length#
584
+ self.spk_embed_dim = spk_embed_dim
585
+ self.enc_p = TextEncoder256(
586
+ inter_channels,
587
+ hidden_channels,
588
+ filter_channels,
589
+ n_heads,
590
+ n_layers,
591
+ kernel_size,
592
+ p_dropout,
593
+ )
594
+ self.dec = GeneratorNSF(
595
+ inter_channels,
596
+ resblock,
597
+ resblock_kernel_sizes,
598
+ resblock_dilation_sizes,
599
+ upsample_rates,
600
+ upsample_initial_channel,
601
+ upsample_kernel_sizes,
602
+ gin_channels=gin_channels,
603
+ sr=sr,
604
+ is_half=kwargs["is_half"],
605
+ )
606
+ self.enc_q = PosteriorEncoder(
607
+ spec_channels,
608
+ inter_channels,
609
+ hidden_channels,
610
+ 5,
611
+ 1,
612
+ 16,
613
+ gin_channels=gin_channels,
614
+ )
615
+ self.flow = ResidualCouplingBlock(
616
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
617
+ )
618
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
619
+ logger.debug(
620
+ "gin_channels: "
621
+ + str(gin_channels)
622
+ + ", self.spk_embed_dim: "
623
+ + str(self.spk_embed_dim)
624
+ )
625
+
626
+ def remove_weight_norm(self):
627
+ self.dec.remove_weight_norm()
628
+ self.flow.remove_weight_norm()
629
+ self.enc_q.remove_weight_norm()
630
+
631
+ def forward(
632
+ self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
633
+ ): # 这里ds是id,[bs,1]
634
+ # print(1,pitch.shape)#[bs,t]
635
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
636
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
637
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
638
+ z_p = self.flow(z, y_mask, g=g)
639
+ z_slice, ids_slice = commons.rand_slice_segments(
640
+ z, y_lengths, self.segment_size
641
+ )
642
+ # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
643
+ pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
644
+ # print(-2,pitchf.shape,z_slice.shape)
645
+ o = self.dec(z_slice, pitchf, g=g)
646
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
647
+
648
+ def infer(self, phone, phone_lengths, pitch, nsff0, sid, rate=None):
649
+ g = self.emb_g(sid).unsqueeze(-1)
650
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
651
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
652
+ if rate:
653
+ head = int(z_p.shape[2] * rate)
654
+ z_p = z_p[:, :, -head:]
655
+ x_mask = x_mask[:, :, -head:]
656
+ nsff0 = nsff0[:, -head:]
657
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
658
+ o = self.dec(z * x_mask, nsff0, g=g)
659
+ return o, x_mask, (z, z_p, m_p, logs_p)
660
+
661
+
662
+ class SynthesizerTrnMs768NSFsid(nn.Module):
663
+ def __init__(
664
+ self,
665
+ spec_channels,
666
+ segment_size,
667
+ inter_channels,
668
+ hidden_channels,
669
+ filter_channels,
670
+ n_heads,
671
+ n_layers,
672
+ kernel_size,
673
+ p_dropout,
674
+ resblock,
675
+ resblock_kernel_sizes,
676
+ resblock_dilation_sizes,
677
+ upsample_rates,
678
+ upsample_initial_channel,
679
+ upsample_kernel_sizes,
680
+ spk_embed_dim,
681
+ gin_channels,
682
+ sr,
683
+ **kwargs
684
+ ):
685
+ super().__init__()
686
+ if type(sr) == type("strr"):
687
+ sr = sr2sr[sr]
688
+ self.spec_channels = spec_channels
689
+ self.inter_channels = inter_channels
690
+ self.hidden_channels = hidden_channels
691
+ self.filter_channels = filter_channels
692
+ self.n_heads = n_heads
693
+ self.n_layers = n_layers
694
+ self.kernel_size = kernel_size
695
+ self.p_dropout = p_dropout
696
+ self.resblock = resblock
697
+ self.resblock_kernel_sizes = resblock_kernel_sizes
698
+ self.resblock_dilation_sizes = resblock_dilation_sizes
699
+ self.upsample_rates = upsample_rates
700
+ self.upsample_initial_channel = upsample_initial_channel
701
+ self.upsample_kernel_sizes = upsample_kernel_sizes
702
+ self.segment_size = segment_size
703
+ self.gin_channels = gin_channels
704
+ # self.hop_length = hop_length#
705
+ self.spk_embed_dim = spk_embed_dim
706
+ self.enc_p = TextEncoder768(
707
+ inter_channels,
708
+ hidden_channels,
709
+ filter_channels,
710
+ n_heads,
711
+ n_layers,
712
+ kernel_size,
713
+ p_dropout,
714
+ )
715
+ self.dec = GeneratorNSF(
716
+ inter_channels,
717
+ resblock,
718
+ resblock_kernel_sizes,
719
+ resblock_dilation_sizes,
720
+ upsample_rates,
721
+ upsample_initial_channel,
722
+ upsample_kernel_sizes,
723
+ gin_channels=gin_channels,
724
+ sr=sr,
725
+ is_half=kwargs["is_half"],
726
+ )
727
+ self.enc_q = PosteriorEncoder(
728
+ spec_channels,
729
+ inter_channels,
730
+ hidden_channels,
731
+ 5,
732
+ 1,
733
+ 16,
734
+ gin_channels=gin_channels,
735
+ )
736
+ self.flow = ResidualCouplingBlock(
737
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
738
+ )
739
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
740
+ logger.debug(
741
+ "gin_channels: "
742
+ + str(gin_channels)
743
+ + ", self.spk_embed_dim: "
744
+ + str(self.spk_embed_dim)
745
+ )
746
+
747
+ def remove_weight_norm(self):
748
+ self.dec.remove_weight_norm()
749
+ self.flow.remove_weight_norm()
750
+ self.enc_q.remove_weight_norm()
751
+
752
+ def forward(
753
+ self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
754
+ ): # 这里ds是id,[bs,1]
755
+ # print(1,pitch.shape)#[bs,t]
756
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
757
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
758
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
759
+ z_p = self.flow(z, y_mask, g=g)
760
+ z_slice, ids_slice = commons.rand_slice_segments(
761
+ z, y_lengths, self.segment_size
762
+ )
763
+ # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
764
+ pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
765
+ # print(-2,pitchf.shape,z_slice.shape)
766
+ o = self.dec(z_slice, pitchf, g=g)
767
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
768
+
769
+ def infer(self, phone, phone_lengths, pitch, nsff0, sid, rate=None):
770
+ g = self.emb_g(sid).unsqueeze(-1)
771
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
772
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
773
+ if rate:
774
+ head = int(z_p.shape[2] * rate)
775
+ z_p = z_p[:, :, -head:]
776
+ x_mask = x_mask[:, :, -head:]
777
+ nsff0 = nsff0[:, -head:]
778
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
779
+ o = self.dec(z * x_mask, nsff0, g=g)
780
+ return o, x_mask, (z, z_p, m_p, logs_p)
781
+
782
+
783
+ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
784
+ def __init__(
785
+ self,
786
+ spec_channels,
787
+ segment_size,
788
+ inter_channels,
789
+ hidden_channels,
790
+ filter_channels,
791
+ n_heads,
792
+ n_layers,
793
+ kernel_size,
794
+ p_dropout,
795
+ resblock,
796
+ resblock_kernel_sizes,
797
+ resblock_dilation_sizes,
798
+ upsample_rates,
799
+ upsample_initial_channel,
800
+ upsample_kernel_sizes,
801
+ spk_embed_dim,
802
+ gin_channels,
803
+ sr=None,
804
+ **kwargs
805
+ ):
806
+ super().__init__()
807
+ self.spec_channels = spec_channels
808
+ self.inter_channels = inter_channels
809
+ self.hidden_channels = hidden_channels
810
+ self.filter_channels = filter_channels
811
+ self.n_heads = n_heads
812
+ self.n_layers = n_layers
813
+ self.kernel_size = kernel_size
814
+ self.p_dropout = p_dropout
815
+ self.resblock = resblock
816
+ self.resblock_kernel_sizes = resblock_kernel_sizes
817
+ self.resblock_dilation_sizes = resblock_dilation_sizes
818
+ self.upsample_rates = upsample_rates
819
+ self.upsample_initial_channel = upsample_initial_channel
820
+ self.upsample_kernel_sizes = upsample_kernel_sizes
821
+ self.segment_size = segment_size
822
+ self.gin_channels = gin_channels
823
+ # self.hop_length = hop_length#
824
+ self.spk_embed_dim = spk_embed_dim
825
+ self.enc_p = TextEncoder256(
826
+ inter_channels,
827
+ hidden_channels,
828
+ filter_channels,
829
+ n_heads,
830
+ n_layers,
831
+ kernel_size,
832
+ p_dropout,
833
+ f0=False,
834
+ )
835
+ self.dec = Generator(
836
+ inter_channels,
837
+ resblock,
838
+ resblock_kernel_sizes,
839
+ resblock_dilation_sizes,
840
+ upsample_rates,
841
+ upsample_initial_channel,
842
+ upsample_kernel_sizes,
843
+ gin_channels=gin_channels,
844
+ )
845
+ self.enc_q = PosteriorEncoder(
846
+ spec_channels,
847
+ inter_channels,
848
+ hidden_channels,
849
+ 5,
850
+ 1,
851
+ 16,
852
+ gin_channels=gin_channels,
853
+ )
854
+ self.flow = ResidualCouplingBlock(
855
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
856
+ )
857
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
858
+ logger.debug(
859
+ "gin_channels: "
860
+ + str(gin_channels)
861
+ + ", self.spk_embed_dim: "
862
+ + str(self.spk_embed_dim)
863
+ )
864
+
865
+ def remove_weight_norm(self):
866
+ self.dec.remove_weight_norm()
867
+ self.flow.remove_weight_norm()
868
+ self.enc_q.remove_weight_norm()
869
+
870
+ def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
871
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
872
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
873
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
874
+ z_p = self.flow(z, y_mask, g=g)
875
+ z_slice, ids_slice = commons.rand_slice_segments(
876
+ z, y_lengths, self.segment_size
877
+ )
878
+ o = self.dec(z_slice, g=g)
879
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
880
+
881
+ def infer(self, phone, phone_lengths, sid, rate=None):
882
+ g = self.emb_g(sid).unsqueeze(-1)
883
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
884
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
885
+ if rate:
886
+ head = int(z_p.shape[2] * rate)
887
+ z_p = z_p[:, :, -head:]
888
+ x_mask = x_mask[:, :, -head:]
889
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
890
+ o = self.dec(z * x_mask, g=g)
891
+ return o, x_mask, (z, z_p, m_p, logs_p)
892
+
893
+
894
+ class SynthesizerTrnMs768NSFsid_nono(nn.Module):
895
+ def __init__(
896
+ self,
897
+ spec_channels,
898
+ segment_size,
899
+ inter_channels,
900
+ hidden_channels,
901
+ filter_channels,
902
+ n_heads,
903
+ n_layers,
904
+ kernel_size,
905
+ p_dropout,
906
+ resblock,
907
+ resblock_kernel_sizes,
908
+ resblock_dilation_sizes,
909
+ upsample_rates,
910
+ upsample_initial_channel,
911
+ upsample_kernel_sizes,
912
+ spk_embed_dim,
913
+ gin_channels,
914
+ sr=None,
915
+ **kwargs
916
+ ):
917
+ super().__init__()
918
+ self.spec_channels = spec_channels
919
+ self.inter_channels = inter_channels
920
+ self.hidden_channels = hidden_channels
921
+ self.filter_channels = filter_channels
922
+ self.n_heads = n_heads
923
+ self.n_layers = n_layers
924
+ self.kernel_size = kernel_size
925
+ self.p_dropout = p_dropout
926
+ self.resblock = resblock
927
+ self.resblock_kernel_sizes = resblock_kernel_sizes
928
+ self.resblock_dilation_sizes = resblock_dilation_sizes
929
+ self.upsample_rates = upsample_rates
930
+ self.upsample_initial_channel = upsample_initial_channel
931
+ self.upsample_kernel_sizes = upsample_kernel_sizes
932
+ self.segment_size = segment_size
933
+ self.gin_channels = gin_channels
934
+ # self.hop_length = hop_length#
935
+ self.spk_embed_dim = spk_embed_dim
936
+ self.enc_p = TextEncoder768(
937
+ inter_channels,
938
+ hidden_channels,
939
+ filter_channels,
940
+ n_heads,
941
+ n_layers,
942
+ kernel_size,
943
+ p_dropout,
944
+ f0=False,
945
+ )
946
+ self.dec = Generator(
947
+ inter_channels,
948
+ resblock,
949
+ resblock_kernel_sizes,
950
+ resblock_dilation_sizes,
951
+ upsample_rates,
952
+ upsample_initial_channel,
953
+ upsample_kernel_sizes,
954
+ gin_channels=gin_channels,
955
+ )
956
+ self.enc_q = PosteriorEncoder(
957
+ spec_channels,
958
+ inter_channels,
959
+ hidden_channels,
960
+ 5,
961
+ 1,
962
+ 16,
963
+ gin_channels=gin_channels,
964
+ )
965
+ self.flow = ResidualCouplingBlock(
966
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
967
+ )
968
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
969
+ logger.debug(
970
+ "gin_channels: "
971
+ + str(gin_channels)
972
+ + ", self.spk_embed_dim: "
973
+ + str(self.spk_embed_dim)
974
+ )
975
+
976
+ def remove_weight_norm(self):
977
+ self.dec.remove_weight_norm()
978
+ self.flow.remove_weight_norm()
979
+ self.enc_q.remove_weight_norm()
980
+
981
+ def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
982
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
983
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
984
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
985
+ z_p = self.flow(z, y_mask, g=g)
986
+ z_slice, ids_slice = commons.rand_slice_segments(
987
+ z, y_lengths, self.segment_size
988
+ )
989
+ o = self.dec(z_slice, g=g)
990
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
991
+
992
+ def infer(self, phone, phone_lengths, sid, rate=None):
993
+ g = self.emb_g(sid).unsqueeze(-1)
994
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
995
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
996
+ if rate:
997
+ head = int(z_p.shape[2] * rate)
998
+ z_p = z_p[:, :, -head:]
999
+ x_mask = x_mask[:, :, -head:]
1000
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
1001
+ o = self.dec(z * x_mask, g=g)
1002
+ return o, x_mask, (z, z_p, m_p, logs_p)
1003
+
1004
+
1005
+ class MultiPeriodDiscriminator(torch.nn.Module):
1006
+ def __init__(self, use_spectral_norm=False):
1007
+ super(MultiPeriodDiscriminator, self).__init__()
1008
+ periods = [2, 3, 5, 7, 11, 17]
1009
+ # periods = [3, 5, 7, 11, 17, 23, 37]
1010
+
1011
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
1012
+ discs = discs + [
1013
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
1014
+ ]
1015
+ self.discriminators = nn.ModuleList(discs)
1016
+
1017
+ def forward(self, y, y_hat):
1018
+ y_d_rs = [] #
1019
+ y_d_gs = []
1020
+ fmap_rs = []
1021
+ fmap_gs = []
1022
+ for i, d in enumerate(self.discriminators):
1023
+ y_d_r, fmap_r = d(y)
1024
+ y_d_g, fmap_g = d(y_hat)
1025
+ # for j in range(len(fmap_r)):
1026
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
1027
+ y_d_rs.append(y_d_r)
1028
+ y_d_gs.append(y_d_g)
1029
+ fmap_rs.append(fmap_r)
1030
+ fmap_gs.append(fmap_g)
1031
+
1032
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
1033
+
1034
+
1035
+ class MultiPeriodDiscriminatorV2(torch.nn.Module):
1036
+ def __init__(self, use_spectral_norm=False):
1037
+ super(MultiPeriodDiscriminatorV2, self).__init__()
1038
+ # periods = [2, 3, 5, 7, 11, 17]
1039
+ periods = [2, 3, 5, 7, 11, 17, 23, 37]
1040
+
1041
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
1042
+ discs = discs + [
1043
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
1044
+ ]
1045
+ self.discriminators = nn.ModuleList(discs)
1046
+
1047
+ def forward(self, y, y_hat):
1048
+ y_d_rs = [] #
1049
+ y_d_gs = []
1050
+ fmap_rs = []
1051
+ fmap_gs = []
1052
+ for i, d in enumerate(self.discriminators):
1053
+ y_d_r, fmap_r = d(y)
1054
+ y_d_g, fmap_g = d(y_hat)
1055
+ # for j in range(len(fmap_r)):
1056
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
1057
+ y_d_rs.append(y_d_r)
1058
+ y_d_gs.append(y_d_g)
1059
+ fmap_rs.append(fmap_r)
1060
+ fmap_gs.append(fmap_g)
1061
+
1062
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
1063
+
1064
+
1065
+ class DiscriminatorS(torch.nn.Module):
1066
+ def __init__(self, use_spectral_norm=False):
1067
+ super(DiscriminatorS, self).__init__()
1068
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
1069
+ self.convs = nn.ModuleList(
1070
+ [
1071
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
1072
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
1073
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
1074
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
1075
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
1076
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
1077
+ ]
1078
+ )
1079
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
1080
+
1081
+ def forward(self, x):
1082
+ fmap = []
1083
+
1084
+ for l in self.convs:
1085
+ x = l(x)
1086
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
1087
+ fmap.append(x)
1088
+ x = self.conv_post(x)
1089
+ fmap.append(x)
1090
+ x = torch.flatten(x, 1, -1)
1091
+
1092
+ return x, fmap
1093
+
1094
+
1095
+ class DiscriminatorP(torch.nn.Module):
1096
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
1097
+ super(DiscriminatorP, self).__init__()
1098
+ self.period = period
1099
+ self.use_spectral_norm = use_spectral_norm
1100
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
1101
+ self.convs = nn.ModuleList(
1102
+ [
1103
+ norm_f(
1104
+ Conv2d(
1105
+ 1,
1106
+ 32,
1107
+ (kernel_size, 1),
1108
+ (stride, 1),
1109
+ padding=(get_padding(kernel_size, 1), 0),
1110
+ )
1111
+ ),
1112
+ norm_f(
1113
+ Conv2d(
1114
+ 32,
1115
+ 128,
1116
+ (kernel_size, 1),
1117
+ (stride, 1),
1118
+ padding=(get_padding(kernel_size, 1), 0),
1119
+ )
1120
+ ),
1121
+ norm_f(
1122
+ Conv2d(
1123
+ 128,
1124
+ 512,
1125
+ (kernel_size, 1),
1126
+ (stride, 1),
1127
+ padding=(get_padding(kernel_size, 1), 0),
1128
+ )
1129
+ ),
1130
+ norm_f(
1131
+ Conv2d(
1132
+ 512,
1133
+ 1024,
1134
+ (kernel_size, 1),
1135
+ (stride, 1),
1136
+ padding=(get_padding(kernel_size, 1), 0),
1137
+ )
1138
+ ),
1139
+ norm_f(
1140
+ Conv2d(
1141
+ 1024,
1142
+ 1024,
1143
+ (kernel_size, 1),
1144
+ 1,
1145
+ padding=(get_padding(kernel_size, 1), 0),
1146
+ )
1147
+ ),
1148
+ ]
1149
+ )
1150
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
1151
+
1152
+ def forward(self, x):
1153
+ fmap = []
1154
+
1155
+ # 1d to 2d
1156
+ b, c, t = x.shape
1157
+ if t % self.period != 0: # pad first
1158
+ n_pad = self.period - (t % self.period)
1159
+ if has_xpu and x.dtype == torch.bfloat16:
1160
+ x = F.pad(x.to(dtype=torch.float16), (0, n_pad), "reflect").to(dtype=torch.bfloat16)
1161
+ else:
1162
+ x = F.pad(x, (0, n_pad), "reflect")
1163
+ t = t + n_pad
1164
+ x = x.view(b, c, t // self.period, self.period)
1165
+
1166
+ for l in self.convs:
1167
+ x = l(x)
1168
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
1169
+ fmap.append(x)
1170
+ x = self.conv_post(x)
1171
+ fmap.append(x)
1172
+ x = torch.flatten(x, 1, -1)
1173
+
1174
+ return x, fmap
lib/infer_libs/infer_pack/modules.py ADDED
@@ -0,0 +1,517 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch import nn
4
+ from torch.nn import Conv1d
5
+ from torch.nn import functional as F
6
+ from torch.nn.utils import remove_weight_norm, weight_norm
7
+
8
+ from lib.infer_libs.infer_pack import commons
9
+ from lib.infer_libs.infer_pack.commons import get_padding, init_weights
10
+ from lib.infer_libs.infer_pack.transforms import piecewise_rational_quadratic_transform
11
+
12
+ LRELU_SLOPE = 0.1
13
+
14
+
15
+ class LayerNorm(nn.Module):
16
+ def __init__(self, channels, eps=1e-5):
17
+ super().__init__()
18
+ self.channels = channels
19
+ self.eps = eps
20
+
21
+ self.gamma = nn.Parameter(torch.ones(channels))
22
+ self.beta = nn.Parameter(torch.zeros(channels))
23
+
24
+ def forward(self, x):
25
+ x = x.transpose(1, -1)
26
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
27
+ return x.transpose(1, -1)
28
+
29
+
30
+ class ConvReluNorm(nn.Module):
31
+ def __init__(
32
+ self,
33
+ in_channels,
34
+ hidden_channels,
35
+ out_channels,
36
+ kernel_size,
37
+ n_layers,
38
+ p_dropout,
39
+ ):
40
+ super().__init__()
41
+ self.in_channels = in_channels
42
+ self.hidden_channels = hidden_channels
43
+ self.out_channels = out_channels
44
+ self.kernel_size = kernel_size
45
+ self.n_layers = n_layers
46
+ self.p_dropout = p_dropout
47
+ assert n_layers > 1, "Number of layers should be larger than 0."
48
+
49
+ self.conv_layers = nn.ModuleList()
50
+ self.norm_layers = nn.ModuleList()
51
+ self.conv_layers.append(
52
+ nn.Conv1d(
53
+ in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
54
+ )
55
+ )
56
+ self.norm_layers.append(LayerNorm(hidden_channels))
57
+ self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
58
+ for _ in range(n_layers - 1):
59
+ self.conv_layers.append(
60
+ nn.Conv1d(
61
+ hidden_channels,
62
+ hidden_channels,
63
+ kernel_size,
64
+ padding=kernel_size // 2,
65
+ )
66
+ )
67
+ self.norm_layers.append(LayerNorm(hidden_channels))
68
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
69
+ self.proj.weight.data.zero_()
70
+ self.proj.bias.data.zero_()
71
+
72
+ def forward(self, x, x_mask):
73
+ x_org = x
74
+ for i in range(self.n_layers):
75
+ x = self.conv_layers[i](x * x_mask)
76
+ x = self.norm_layers[i](x)
77
+ x = self.relu_drop(x)
78
+ x = x_org + self.proj(x)
79
+ return x * x_mask
80
+
81
+
82
+ class DDSConv(nn.Module):
83
+ """
84
+ Dialted and Depth-Separable Convolution
85
+ """
86
+
87
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
88
+ super().__init__()
89
+ self.channels = channels
90
+ self.kernel_size = kernel_size
91
+ self.n_layers = n_layers
92
+ self.p_dropout = p_dropout
93
+
94
+ self.drop = nn.Dropout(p_dropout)
95
+ self.convs_sep = nn.ModuleList()
96
+ self.convs_1x1 = nn.ModuleList()
97
+ self.norms_1 = nn.ModuleList()
98
+ self.norms_2 = nn.ModuleList()
99
+ for i in range(n_layers):
100
+ dilation = kernel_size**i
101
+ padding = (kernel_size * dilation - dilation) // 2
102
+ self.convs_sep.append(
103
+ nn.Conv1d(
104
+ channels,
105
+ channels,
106
+ kernel_size,
107
+ groups=channels,
108
+ dilation=dilation,
109
+ padding=padding,
110
+ )
111
+ )
112
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
113
+ self.norms_1.append(LayerNorm(channels))
114
+ self.norms_2.append(LayerNorm(channels))
115
+
116
+ def forward(self, x, x_mask, g=None):
117
+ if g is not None:
118
+ x = x + g
119
+ for i in range(self.n_layers):
120
+ y = self.convs_sep[i](x * x_mask)
121
+ y = self.norms_1[i](y)
122
+ y = F.gelu(y)
123
+ y = self.convs_1x1[i](y)
124
+ y = self.norms_2[i](y)
125
+ y = F.gelu(y)
126
+ y = self.drop(y)
127
+ x = x + y
128
+ return x * x_mask
129
+
130
+
131
+ class WN(torch.nn.Module):
132
+ def __init__(
133
+ self,
134
+ hidden_channels,
135
+ kernel_size,
136
+ dilation_rate,
137
+ n_layers,
138
+ gin_channels=0,
139
+ p_dropout=0,
140
+ ):
141
+ super(WN, self).__init__()
142
+ assert kernel_size % 2 == 1
143
+ self.hidden_channels = hidden_channels
144
+ self.kernel_size = (kernel_size,)
145
+ self.dilation_rate = dilation_rate
146
+ self.n_layers = n_layers
147
+ self.gin_channels = gin_channels
148
+ self.p_dropout = p_dropout
149
+
150
+ self.in_layers = torch.nn.ModuleList()
151
+ self.res_skip_layers = torch.nn.ModuleList()
152
+ self.drop = nn.Dropout(p_dropout)
153
+
154
+ if gin_channels != 0:
155
+ cond_layer = torch.nn.Conv1d(
156
+ gin_channels, 2 * hidden_channels * n_layers, 1
157
+ )
158
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
159
+
160
+ for i in range(n_layers):
161
+ dilation = dilation_rate**i
162
+ padding = int((kernel_size * dilation - dilation) / 2)
163
+ in_layer = torch.nn.Conv1d(
164
+ hidden_channels,
165
+ 2 * hidden_channels,
166
+ kernel_size,
167
+ dilation=dilation,
168
+ padding=padding,
169
+ )
170
+ in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
171
+ self.in_layers.append(in_layer)
172
+
173
+ # last one is not necessary
174
+ if i < n_layers - 1:
175
+ res_skip_channels = 2 * hidden_channels
176
+ else:
177
+ res_skip_channels = hidden_channels
178
+
179
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
180
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
181
+ self.res_skip_layers.append(res_skip_layer)
182
+
183
+ def forward(self, x, x_mask, g=None, **kwargs):
184
+ output = torch.zeros_like(x)
185
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
186
+
187
+ if g is not None:
188
+ g = self.cond_layer(g)
189
+
190
+ for i in range(self.n_layers):
191
+ x_in = self.in_layers[i](x)
192
+ if g is not None:
193
+ cond_offset = i * 2 * self.hidden_channels
194
+ g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
195
+ else:
196
+ g_l = torch.zeros_like(x_in)
197
+
198
+ acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
199
+ acts = self.drop(acts)
200
+
201
+ res_skip_acts = self.res_skip_layers[i](acts)
202
+ if i < self.n_layers - 1:
203
+ res_acts = res_skip_acts[:, : self.hidden_channels, :]
204
+ x = (x + res_acts) * x_mask
205
+ output = output + res_skip_acts[:, self.hidden_channels :, :]
206
+ else:
207
+ output = output + res_skip_acts
208
+ return output * x_mask
209
+
210
+ def remove_weight_norm(self):
211
+ if self.gin_channels != 0:
212
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
213
+ for l in self.in_layers:
214
+ torch.nn.utils.remove_weight_norm(l)
215
+ for l in self.res_skip_layers:
216
+ torch.nn.utils.remove_weight_norm(l)
217
+
218
+
219
+ class ResBlock1(torch.nn.Module):
220
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
221
+ super(ResBlock1, self).__init__()
222
+ self.convs1 = nn.ModuleList(
223
+ [
224
+ weight_norm(
225
+ Conv1d(
226
+ channels,
227
+ channels,
228
+ kernel_size,
229
+ 1,
230
+ dilation=dilation[0],
231
+ padding=get_padding(kernel_size, dilation[0]),
232
+ )
233
+ ),
234
+ weight_norm(
235
+ Conv1d(
236
+ channels,
237
+ channels,
238
+ kernel_size,
239
+ 1,
240
+ dilation=dilation[1],
241
+ padding=get_padding(kernel_size, dilation[1]),
242
+ )
243
+ ),
244
+ weight_norm(
245
+ Conv1d(
246
+ channels,
247
+ channels,
248
+ kernel_size,
249
+ 1,
250
+ dilation=dilation[2],
251
+ padding=get_padding(kernel_size, dilation[2]),
252
+ )
253
+ ),
254
+ ]
255
+ )
256
+ self.convs1.apply(init_weights)
257
+
258
+ self.convs2 = nn.ModuleList(
259
+ [
260
+ weight_norm(
261
+ Conv1d(
262
+ channels,
263
+ channels,
264
+ kernel_size,
265
+ 1,
266
+ dilation=1,
267
+ padding=get_padding(kernel_size, 1),
268
+ )
269
+ ),
270
+ weight_norm(
271
+ Conv1d(
272
+ channels,
273
+ channels,
274
+ kernel_size,
275
+ 1,
276
+ dilation=1,
277
+ padding=get_padding(kernel_size, 1),
278
+ )
279
+ ),
280
+ weight_norm(
281
+ Conv1d(
282
+ channels,
283
+ channels,
284
+ kernel_size,
285
+ 1,
286
+ dilation=1,
287
+ padding=get_padding(kernel_size, 1),
288
+ )
289
+ ),
290
+ ]
291
+ )
292
+ self.convs2.apply(init_weights)
293
+
294
+ def forward(self, x, x_mask=None):
295
+ for c1, c2 in zip(self.convs1, self.convs2):
296
+ xt = F.leaky_relu(x, LRELU_SLOPE)
297
+ if x_mask is not None:
298
+ xt = xt * x_mask
299
+ xt = c1(xt)
300
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
301
+ if x_mask is not None:
302
+ xt = xt * x_mask
303
+ xt = c2(xt)
304
+ x = xt + x
305
+ if x_mask is not None:
306
+ x = x * x_mask
307
+ return x
308
+
309
+ def remove_weight_norm(self):
310
+ for l in self.convs1:
311
+ remove_weight_norm(l)
312
+ for l in self.convs2:
313
+ remove_weight_norm(l)
314
+
315
+
316
+ class ResBlock2(torch.nn.Module):
317
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
318
+ super(ResBlock2, self).__init__()
319
+ self.convs = nn.ModuleList(
320
+ [
321
+ weight_norm(
322
+ Conv1d(
323
+ channels,
324
+ channels,
325
+ kernel_size,
326
+ 1,
327
+ dilation=dilation[0],
328
+ padding=get_padding(kernel_size, dilation[0]),
329
+ )
330
+ ),
331
+ weight_norm(
332
+ Conv1d(
333
+ channels,
334
+ channels,
335
+ kernel_size,
336
+ 1,
337
+ dilation=dilation[1],
338
+ padding=get_padding(kernel_size, dilation[1]),
339
+ )
340
+ ),
341
+ ]
342
+ )
343
+ self.convs.apply(init_weights)
344
+
345
+ def forward(self, x, x_mask=None):
346
+ for c in self.convs:
347
+ xt = F.leaky_relu(x, LRELU_SLOPE)
348
+ if x_mask is not None:
349
+ xt = xt * x_mask
350
+ xt = c(xt)
351
+ x = xt + x
352
+ if x_mask is not None:
353
+ x = x * x_mask
354
+ return x
355
+
356
+ def remove_weight_norm(self):
357
+ for l in self.convs:
358
+ remove_weight_norm(l)
359
+
360
+
361
+ class Log(nn.Module):
362
+ def forward(self, x, x_mask, reverse=False, **kwargs):
363
+ if not reverse:
364
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
365
+ logdet = torch.sum(-y, [1, 2])
366
+ return y, logdet
367
+ else:
368
+ x = torch.exp(x) * x_mask
369
+ return x
370
+
371
+
372
+ class Flip(nn.Module):
373
+ def forward(self, x, *args, reverse=False, **kwargs):
374
+ x = torch.flip(x, [1])
375
+ if not reverse:
376
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
377
+ return x, logdet
378
+ else:
379
+ return x
380
+
381
+
382
+ class ElementwiseAffine(nn.Module):
383
+ def __init__(self, channels):
384
+ super().__init__()
385
+ self.channels = channels
386
+ self.m = nn.Parameter(torch.zeros(channels, 1))
387
+ self.logs = nn.Parameter(torch.zeros(channels, 1))
388
+
389
+ def forward(self, x, x_mask, reverse=False, **kwargs):
390
+ if not reverse:
391
+ y = self.m + torch.exp(self.logs) * x
392
+ y = y * x_mask
393
+ logdet = torch.sum(self.logs * x_mask, [1, 2])
394
+ return y, logdet
395
+ else:
396
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
397
+ return x
398
+
399
+
400
+ class ResidualCouplingLayer(nn.Module):
401
+ def __init__(
402
+ self,
403
+ channels,
404
+ hidden_channels,
405
+ kernel_size,
406
+ dilation_rate,
407
+ n_layers,
408
+ p_dropout=0,
409
+ gin_channels=0,
410
+ mean_only=False,
411
+ ):
412
+ assert channels % 2 == 0, "channels should be divisible by 2"
413
+ super().__init__()
414
+ self.channels = channels
415
+ self.hidden_channels = hidden_channels
416
+ self.kernel_size = kernel_size
417
+ self.dilation_rate = dilation_rate
418
+ self.n_layers = n_layers
419
+ self.half_channels = channels // 2
420
+ self.mean_only = mean_only
421
+
422
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
423
+ self.enc = WN(
424
+ hidden_channels,
425
+ kernel_size,
426
+ dilation_rate,
427
+ n_layers,
428
+ p_dropout=p_dropout,
429
+ gin_channels=gin_channels,
430
+ )
431
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
432
+ self.post.weight.data.zero_()
433
+ self.post.bias.data.zero_()
434
+
435
+ def forward(self, x, x_mask, g=None, reverse=False):
436
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
437
+ h = self.pre(x0) * x_mask
438
+ h = self.enc(h, x_mask, g=g)
439
+ stats = self.post(h) * x_mask
440
+ if not self.mean_only:
441
+ m, logs = torch.split(stats, [self.half_channels] * 2, 1)
442
+ else:
443
+ m = stats
444
+ logs = torch.zeros_like(m)
445
+
446
+ if not reverse:
447
+ x1 = m + x1 * torch.exp(logs) * x_mask
448
+ x = torch.cat([x0, x1], 1)
449
+ logdet = torch.sum(logs, [1, 2])
450
+ return x, logdet
451
+ else:
452
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
453
+ x = torch.cat([x0, x1], 1)
454
+ return x
455
+
456
+ def remove_weight_norm(self):
457
+ self.enc.remove_weight_norm()
458
+
459
+
460
+ class ConvFlow(nn.Module):
461
+ def __init__(
462
+ self,
463
+ in_channels,
464
+ filter_channels,
465
+ kernel_size,
466
+ n_layers,
467
+ num_bins=10,
468
+ tail_bound=5.0,
469
+ ):
470
+ super().__init__()
471
+ self.in_channels = in_channels
472
+ self.filter_channels = filter_channels
473
+ self.kernel_size = kernel_size
474
+ self.n_layers = n_layers
475
+ self.num_bins = num_bins
476
+ self.tail_bound = tail_bound
477
+ self.half_channels = in_channels // 2
478
+
479
+ self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
480
+ self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
481
+ self.proj = nn.Conv1d(
482
+ filter_channels, self.half_channels * (num_bins * 3 - 1), 1
483
+ )
484
+ self.proj.weight.data.zero_()
485
+ self.proj.bias.data.zero_()
486
+
487
+ def forward(self, x, x_mask, g=None, reverse=False):
488
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
489
+ h = self.pre(x0)
490
+ h = self.convs(h, x_mask, g=g)
491
+ h = self.proj(h) * x_mask
492
+
493
+ b, c, t = x0.shape
494
+ h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
495
+
496
+ unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
497
+ unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
498
+ self.filter_channels
499
+ )
500
+ unnormalized_derivatives = h[..., 2 * self.num_bins :]
501
+
502
+ x1, logabsdet = piecewise_rational_quadratic_transform(
503
+ x1,
504
+ unnormalized_widths,
505
+ unnormalized_heights,
506
+ unnormalized_derivatives,
507
+ inverse=reverse,
508
+ tails="linear",
509
+ tail_bound=self.tail_bound,
510
+ )
511
+
512
+ x = torch.cat([x0, x1], 1) * x_mask
513
+ logdet = torch.sum(logabsdet * x_mask, [1, 2])
514
+ if not reverse:
515
+ return x, logdet
516
+ else:
517
+ return x
lib/infer_libs/infer_pack/transforms.py ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ from torch.nn import functional as F
4
+
5
+ DEFAULT_MIN_BIN_WIDTH = 1e-3
6
+ DEFAULT_MIN_BIN_HEIGHT = 1e-3
7
+ DEFAULT_MIN_DERIVATIVE = 1e-3
8
+
9
+
10
+ def piecewise_rational_quadratic_transform(
11
+ inputs,
12
+ unnormalized_widths,
13
+ unnormalized_heights,
14
+ unnormalized_derivatives,
15
+ inverse=False,
16
+ tails=None,
17
+ tail_bound=1.0,
18
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
19
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
20
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
21
+ ):
22
+ if tails is None:
23
+ spline_fn = rational_quadratic_spline
24
+ spline_kwargs = {}
25
+ else:
26
+ spline_fn = unconstrained_rational_quadratic_spline
27
+ spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
28
+
29
+ outputs, logabsdet = spline_fn(
30
+ inputs=inputs,
31
+ unnormalized_widths=unnormalized_widths,
32
+ unnormalized_heights=unnormalized_heights,
33
+ unnormalized_derivatives=unnormalized_derivatives,
34
+ inverse=inverse,
35
+ min_bin_width=min_bin_width,
36
+ min_bin_height=min_bin_height,
37
+ min_derivative=min_derivative,
38
+ **spline_kwargs
39
+ )
40
+ return outputs, logabsdet
41
+
42
+
43
+ def searchsorted(bin_locations, inputs, eps=1e-6):
44
+ bin_locations[..., -1] += eps
45
+ return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
46
+
47
+
48
+ def unconstrained_rational_quadratic_spline(
49
+ inputs,
50
+ unnormalized_widths,
51
+ unnormalized_heights,
52
+ unnormalized_derivatives,
53
+ inverse=False,
54
+ tails="linear",
55
+ tail_bound=1.0,
56
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
57
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
58
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
59
+ ):
60
+ inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
61
+ outside_interval_mask = ~inside_interval_mask
62
+
63
+ outputs = torch.zeros_like(inputs)
64
+ logabsdet = torch.zeros_like(inputs)
65
+
66
+ if tails == "linear":
67
+ unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
68
+ constant = np.log(np.exp(1 - min_derivative) - 1)
69
+ unnormalized_derivatives[..., 0] = constant
70
+ unnormalized_derivatives[..., -1] = constant
71
+
72
+ outputs[outside_interval_mask] = inputs[outside_interval_mask]
73
+ logabsdet[outside_interval_mask] = 0
74
+ else:
75
+ raise RuntimeError("{} tails are not implemented.".format(tails))
76
+
77
+ (
78
+ outputs[inside_interval_mask],
79
+ logabsdet[inside_interval_mask],
80
+ ) = rational_quadratic_spline(
81
+ inputs=inputs[inside_interval_mask],
82
+ unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
83
+ unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
84
+ unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
85
+ inverse=inverse,
86
+ left=-tail_bound,
87
+ right=tail_bound,
88
+ bottom=-tail_bound,
89
+ top=tail_bound,
90
+ min_bin_width=min_bin_width,
91
+ min_bin_height=min_bin_height,
92
+ min_derivative=min_derivative,
93
+ )
94
+
95
+ return outputs, logabsdet
96
+
97
+
98
+ def rational_quadratic_spline(
99
+ inputs,
100
+ unnormalized_widths,
101
+ unnormalized_heights,
102
+ unnormalized_derivatives,
103
+ inverse=False,
104
+ left=0.0,
105
+ right=1.0,
106
+ bottom=0.0,
107
+ top=1.0,
108
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
109
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
110
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
111
+ ):
112
+ if torch.min(inputs) < left or torch.max(inputs) > right:
113
+ raise ValueError("Input to a transform is not within its domain")
114
+
115
+ num_bins = unnormalized_widths.shape[-1]
116
+
117
+ if min_bin_width * num_bins > 1.0:
118
+ raise ValueError("Minimal bin width too large for the number of bins")
119
+ if min_bin_height * num_bins > 1.0:
120
+ raise ValueError("Minimal bin height too large for the number of bins")
121
+
122
+ widths = F.softmax(unnormalized_widths, dim=-1)
123
+ widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
124
+ cumwidths = torch.cumsum(widths, dim=-1)
125
+ cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
126
+ cumwidths = (right - left) * cumwidths + left
127
+ cumwidths[..., 0] = left
128
+ cumwidths[..., -1] = right
129
+ widths = cumwidths[..., 1:] - cumwidths[..., :-1]
130
+
131
+ derivatives = min_derivative + F.softplus(unnormalized_derivatives)
132
+
133
+ heights = F.softmax(unnormalized_heights, dim=-1)
134
+ heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
135
+ cumheights = torch.cumsum(heights, dim=-1)
136
+ cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
137
+ cumheights = (top - bottom) * cumheights + bottom
138
+ cumheights[..., 0] = bottom
139
+ cumheights[..., -1] = top
140
+ heights = cumheights[..., 1:] - cumheights[..., :-1]
141
+
142
+ if inverse:
143
+ bin_idx = searchsorted(cumheights, inputs)[..., None]
144
+ else:
145
+ bin_idx = searchsorted(cumwidths, inputs)[..., None]
146
+
147
+ input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
148
+ input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
149
+
150
+ input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
151
+ delta = heights / widths
152
+ input_delta = delta.gather(-1, bin_idx)[..., 0]
153
+
154
+ input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
155
+ input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
156
+
157
+ input_heights = heights.gather(-1, bin_idx)[..., 0]
158
+
159
+ if inverse:
160
+ a = (inputs - input_cumheights) * (
161
+ input_derivatives + input_derivatives_plus_one - 2 * input_delta
162
+ ) + input_heights * (input_delta - input_derivatives)
163
+ b = input_heights * input_derivatives - (inputs - input_cumheights) * (
164
+ input_derivatives + input_derivatives_plus_one - 2 * input_delta
165
+ )
166
+ c = -input_delta * (inputs - input_cumheights)
167
+
168
+ discriminant = b.pow(2) - 4 * a * c
169
+ assert (discriminant >= 0).all()
170
+
171
+ root = (2 * c) / (-b - torch.sqrt(discriminant))
172
+ outputs = root * input_bin_widths + input_cumwidths
173
+
174
+ theta_one_minus_theta = root * (1 - root)
175
+ denominator = input_delta + (
176
+ (input_derivatives + input_derivatives_plus_one - 2 * input_delta)
177
+ * theta_one_minus_theta
178
+ )
179
+ derivative_numerator = input_delta.pow(2) * (
180
+ input_derivatives_plus_one * root.pow(2)
181
+ + 2 * input_delta * theta_one_minus_theta
182
+ + input_derivatives * (1 - root).pow(2)
183
+ )
184
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
185
+
186
+ return outputs, -logabsdet
187
+ else:
188
+ theta = (inputs - input_cumwidths) / input_bin_widths
189
+ theta_one_minus_theta = theta * (1 - theta)
190
+
191
+ numerator = input_heights * (
192
+ input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
193
+ )
194
+ denominator = input_delta + (
195
+ (input_derivatives + input_derivatives_plus_one - 2 * input_delta)
196
+ * theta_one_minus_theta
197
+ )
198
+ outputs = input_cumheights + numerator / denominator
199
+
200
+ derivative_numerator = input_delta.pow(2) * (
201
+ input_derivatives_plus_one * theta.pow(2)
202
+ + 2 * input_delta * theta_one_minus_theta
203
+ + input_derivatives * (1 - theta).pow(2)
204
+ )
205
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
206
+
207
+ return outputs, logabsdet
lib/infer_libs/rmvpe.py ADDED
@@ -0,0 +1,705 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import numpy as np
4
+ import torch
5
+ try:
6
+ #Fix "Torch not compiled with CUDA enabled"
7
+ import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
8
+ if torch.xpu.is_available():
9
+ from lib.infer.modules.ipex import ipex_init
10
+ ipex_init()
11
+ except Exception:
12
+ pass
13
+ import torch.nn as nn
14
+ import torch.nn.functional as F
15
+ from librosa.util import normalize, pad_center, tiny
16
+ from scipy.signal import get_window
17
+
18
+ import logging
19
+
20
+ logger = logging.getLogger(__name__)
21
+
22
+
23
+ ###stft codes from https://github.com/pseeth/torch-stft/blob/master/torch_stft/util.py
24
+ def window_sumsquare(
25
+ window,
26
+ n_frames,
27
+ hop_length=200,
28
+ win_length=800,
29
+ n_fft=800,
30
+ dtype=np.float32,
31
+ norm=None,
32
+ ):
33
+ """
34
+ # from librosa 0.6
35
+ Compute the sum-square envelope of a window function at a given hop length.
36
+ This is used to estimate modulation effects induced by windowing
37
+ observations in short-time fourier transforms.
38
+ Parameters
39
+ ----------
40
+ window : string, tuple, number, callable, or list-like
41
+ Window specification, as in `get_window`
42
+ n_frames : int > 0
43
+ The number of analysis frames
44
+ hop_length : int > 0
45
+ The number of samples to advance between frames
46
+ win_length : [optional]
47
+ The length of the window function. By default, this matches `n_fft`.
48
+ n_fft : int > 0
49
+ The length of each analysis frame.
50
+ dtype : np.dtype
51
+ The data type of the output
52
+ Returns
53
+ -------
54
+ wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
55
+ The sum-squared envelope of the window function
56
+ """
57
+ if win_length is None:
58
+ win_length = n_fft
59
+
60
+ n = n_fft + hop_length * (n_frames - 1)
61
+ x = np.zeros(n, dtype=dtype)
62
+
63
+ # Compute the squared window at the desired length
64
+ win_sq = get_window(window, win_length, fftbins=True)
65
+ win_sq = normalize(win_sq, norm=norm) ** 2
66
+ win_sq = pad_center(win_sq, n_fft)
67
+
68
+ # Fill the envelope
69
+ for i in range(n_frames):
70
+ sample = i * hop_length
71
+ x[sample : min(n, sample + n_fft)] += win_sq[: max(0, min(n_fft, n - sample))]
72
+ return x
73
+
74
+
75
+ class STFT(torch.nn.Module):
76
+ def __init__(
77
+ self, filter_length=1024, hop_length=512, win_length=None, window="hann"
78
+ ):
79
+ """
80
+ This module implements an STFT using 1D convolution and 1D transpose convolutions.
81
+ This is a bit tricky so there are some cases that probably won't work as working
82
+ out the same sizes before and after in all overlap add setups is tough. Right now,
83
+ this code should work with hop lengths that are half the filter length (50% overlap
84
+ between frames).
85
+
86
+ Keyword Arguments:
87
+ filter_length {int} -- Length of filters used (default: {1024})
88
+ hop_length {int} -- Hop length of STFT (restrict to 50% overlap between frames) (default: {512})
89
+ win_length {[type]} -- Length of the window function applied to each frame (if not specified, it
90
+ equals the filter length). (default: {None})
91
+ window {str} -- Type of window to use (options are bartlett, hann, hamming, blackman, blackmanharris)
92
+ (default: {'hann'})
93
+ """
94
+ super(STFT, self).__init__()
95
+ self.filter_length = filter_length
96
+ self.hop_length = hop_length
97
+ self.win_length = win_length if win_length else filter_length
98
+ self.window = window
99
+ self.forward_transform = None
100
+ self.pad_amount = int(self.filter_length / 2)
101
+ #scale = self.filter_length / self.hop_length
102
+ fourier_basis = np.fft.fft(np.eye(self.filter_length))
103
+
104
+ cutoff = int((self.filter_length / 2 + 1))
105
+ fourier_basis = np.vstack(
106
+ [np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])]
107
+ )
108
+ forward_basis = torch.FloatTensor(fourier_basis)
109
+ inverse_basis = torch.FloatTensor(
110
+ np.linalg.pinv(fourier_basis)
111
+ )
112
+
113
+ assert filter_length >= self.win_length
114
+ # get window and zero center pad it to filter_length
115
+ fft_window = get_window(window, self.win_length, fftbins=True)
116
+ fft_window = pad_center(fft_window, size=filter_length)
117
+ fft_window = torch.from_numpy(fft_window).float()
118
+
119
+ # window the bases
120
+ forward_basis *= fft_window
121
+ inverse_basis = (inverse_basis.T * fft_window).T
122
+
123
+ self.register_buffer("forward_basis", forward_basis.float())
124
+ self.register_buffer("inverse_basis", inverse_basis.float())
125
+ self.register_buffer("fft_window", fft_window.float())
126
+
127
+ def transform(self, input_data, return_phase=False):
128
+ """Take input data (audio) to STFT domain.
129
+
130
+ Arguments:
131
+ input_data {tensor} -- Tensor of floats, with shape (num_batch, num_samples)
132
+
133
+ Returns:
134
+ magnitude {tensor} -- Magnitude of STFT with shape (num_batch,
135
+ num_frequencies, num_frames)
136
+ phase {tensor} -- Phase of STFT with shape (num_batch,
137
+ num_frequencies, num_frames)
138
+ """
139
+ # num_batches = input_data.shape[0]
140
+ # num_samples = input_data.shape[-1]
141
+
142
+ # self.num_samples = num_samples
143
+
144
+ # similar to librosa, reflect-pad the input
145
+ # input_data = input_data.view(num_batches, 1, num_samples)
146
+ # print(1234,input_data.shape)
147
+ input_data = F.pad(
148
+ input_data,
149
+ (self.pad_amount, self.pad_amount),
150
+ mode="reflect",
151
+ )
152
+
153
+ forward_transform = input_data.unfold(1, self.filter_length, self.hop_length).permute(0, 2, 1)
154
+ forward_transform = torch.matmul(self.forward_basis, forward_transform)
155
+
156
+ cutoff = int((self.filter_length / 2) + 1)
157
+ real_part = forward_transform[:, :cutoff, :]
158
+ imag_part = forward_transform[:, cutoff:, :]
159
+
160
+ magnitude = torch.sqrt(real_part**2 + imag_part**2)
161
+ # phase = torch.atan2(imag_part.data, real_part.data)
162
+
163
+ if return_phase:
164
+ phase = torch.atan2(imag_part.data, real_part.data)
165
+ return magnitude, phase
166
+ else:
167
+ return magnitude
168
+
169
+ def inverse(self, magnitude, phase):
170
+ """Call the inverse STFT (iSTFT), given magnitude and phase tensors produced
171
+ by the ```transform``` function.
172
+
173
+ Arguments:
174
+ magnitude {tensor} -- Magnitude of STFT with shape (num_batch,
175
+ num_frequencies, num_frames)
176
+ phase {tensor} -- Phase of STFT with shape (num_batch,
177
+ num_frequencies, num_frames)
178
+
179
+ Returns:
180
+ inverse_transform {tensor} -- Reconstructed audio given magnitude and phase. Of
181
+ shape (num_batch, num_samples)
182
+ """
183
+ cat = torch.cat(
184
+ [magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
185
+ )
186
+
187
+ fold = torch.nn.Fold(
188
+ output_size=(1, (cat.size(-1) - 1) * self.hop_length + self.filter_length),
189
+ kernel_size=(1, self.filter_length),
190
+ stride=(1, self.hop_length))
191
+ inverse_transform = torch.matmul(self.inverse_basis, cat)
192
+ inverse_transform = fold(inverse_transform)[:, 0, 0, self.pad_amount : -self.pad_amount]
193
+ window_square_sum = self.fft_window.pow(2).repeat(cat.size(-1), 1).T.unsqueeze(0)
194
+ window_square_sum = fold(window_square_sum)[:, 0, 0, self.pad_amount : -self.pad_amount]
195
+ inverse_transform /= window_square_sum
196
+
197
+ return inverse_transform
198
+
199
+ def forward(self, input_data):
200
+ """Take input data (audio) to STFT domain and then back to audio.
201
+
202
+ Arguments:
203
+ input_data {tensor} -- Tensor of floats, with shape (num_batch, num_samples)
204
+
205
+ Returns:
206
+ reconstruction {tensor} -- Reconstructed audio given magnitude and phase. Of
207
+ shape (num_batch, num_samples)
208
+ """
209
+ self.magnitude, self.phase = self.transform(input_data, return_phase=True)
210
+ reconstruction = self.inverse(self.magnitude, self.phase)
211
+ return reconstruction
212
+
213
+
214
+ from time import time as ttime
215
+
216
+
217
+ class BiGRU(nn.Module):
218
+ def __init__(self, input_features, hidden_features, num_layers):
219
+ super(BiGRU, self).__init__()
220
+ self.gru = nn.GRU(
221
+ input_features,
222
+ hidden_features,
223
+ num_layers=num_layers,
224
+ batch_first=True,
225
+ bidirectional=True,
226
+ )
227
+
228
+ def forward(self, x):
229
+ return self.gru(x)[0]
230
+
231
+
232
+ class ConvBlockRes(nn.Module):
233
+ def __init__(self, in_channels, out_channels, momentum=0.01):
234
+ super(ConvBlockRes, self).__init__()
235
+ self.conv = nn.Sequential(
236
+ nn.Conv2d(
237
+ in_channels=in_channels,
238
+ out_channels=out_channels,
239
+ kernel_size=(3, 3),
240
+ stride=(1, 1),
241
+ padding=(1, 1),
242
+ bias=False,
243
+ ),
244
+ nn.BatchNorm2d(out_channels, momentum=momentum),
245
+ nn.ReLU(),
246
+ nn.Conv2d(
247
+ in_channels=out_channels,
248
+ out_channels=out_channels,
249
+ kernel_size=(3, 3),
250
+ stride=(1, 1),
251
+ padding=(1, 1),
252
+ bias=False,
253
+ ),
254
+ nn.BatchNorm2d(out_channels, momentum=momentum),
255
+ nn.ReLU(),
256
+ )
257
+ if in_channels != out_channels:
258
+ self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
259
+ self.is_shortcut = True
260
+ else:
261
+ self.is_shortcut = False
262
+
263
+ def forward(self, x):
264
+ if self.is_shortcut:
265
+ return self.conv(x) + self.shortcut(x)
266
+ else:
267
+ return self.conv(x) + x
268
+
269
+
270
+ class Encoder(nn.Module):
271
+ def __init__(
272
+ self,
273
+ in_channels,
274
+ in_size,
275
+ n_encoders,
276
+ kernel_size,
277
+ n_blocks,
278
+ out_channels=16,
279
+ momentum=0.01,
280
+ ):
281
+ super(Encoder, self).__init__()
282
+ self.n_encoders = n_encoders
283
+ self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
284
+ self.layers = nn.ModuleList()
285
+ self.latent_channels = []
286
+ for i in range(self.n_encoders):
287
+ self.layers.append(
288
+ ResEncoderBlock(
289
+ in_channels, out_channels, kernel_size, n_blocks, momentum=momentum
290
+ )
291
+ )
292
+ self.latent_channels.append([out_channels, in_size])
293
+ in_channels = out_channels
294
+ out_channels *= 2
295
+ in_size //= 2
296
+ self.out_size = in_size
297
+ self.out_channel = out_channels
298
+
299
+ def forward(self, x):
300
+ concat_tensors = []
301
+ x = self.bn(x)
302
+ for i in range(self.n_encoders):
303
+ _, x = self.layers[i](x)
304
+ concat_tensors.append(_)
305
+ return x, concat_tensors
306
+
307
+
308
+ class ResEncoderBlock(nn.Module):
309
+ def __init__(
310
+ self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01
311
+ ):
312
+ super(ResEncoderBlock, self).__init__()
313
+ self.n_blocks = n_blocks
314
+ self.conv = nn.ModuleList()
315
+ self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
316
+ for i in range(n_blocks - 1):
317
+ self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
318
+ self.kernel_size = kernel_size
319
+ if self.kernel_size is not None:
320
+ self.pool = nn.AvgPool2d(kernel_size=kernel_size)
321
+
322
+ def forward(self, x):
323
+ for i in range(self.n_blocks):
324
+ x = self.conv[i](x)
325
+ if self.kernel_size is not None:
326
+ return x, self.pool(x)
327
+ else:
328
+ return x
329
+
330
+
331
+ class Intermediate(nn.Module): #
332
+ def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
333
+ super(Intermediate, self).__init__()
334
+ self.n_inters = n_inters
335
+ self.layers = nn.ModuleList()
336
+ self.layers.append(
337
+ ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)
338
+ )
339
+ for i in range(self.n_inters - 1):
340
+ self.layers.append(
341
+ ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)
342
+ )
343
+
344
+ def forward(self, x):
345
+ for i in range(self.n_inters):
346
+ x = self.layers[i](x)
347
+ return x
348
+
349
+
350
+ class ResDecoderBlock(nn.Module):
351
+ def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
352
+ super(ResDecoderBlock, self).__init__()
353
+ out_padding = (0, 1) if stride == (1, 2) else (1, 1)
354
+ self.n_blocks = n_blocks
355
+ self.conv1 = nn.Sequential(
356
+ nn.ConvTranspose2d(
357
+ in_channels=in_channels,
358
+ out_channels=out_channels,
359
+ kernel_size=(3, 3),
360
+ stride=stride,
361
+ padding=(1, 1),
362
+ output_padding=out_padding,
363
+ bias=False,
364
+ ),
365
+ nn.BatchNorm2d(out_channels, momentum=momentum),
366
+ nn.ReLU(),
367
+ )
368
+ self.conv2 = nn.ModuleList()
369
+ self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
370
+ for i in range(n_blocks - 1):
371
+ self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
372
+
373
+ def forward(self, x, concat_tensor):
374
+ x = self.conv1(x)
375
+ x = torch.cat((x, concat_tensor), dim=1)
376
+ for i in range(self.n_blocks):
377
+ x = self.conv2[i](x)
378
+ return x
379
+
380
+
381
+ class Decoder(nn.Module):
382
+ def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
383
+ super(Decoder, self).__init__()
384
+ self.layers = nn.ModuleList()
385
+ self.n_decoders = n_decoders
386
+ for i in range(self.n_decoders):
387
+ out_channels = in_channels // 2
388
+ self.layers.append(
389
+ ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)
390
+ )
391
+ in_channels = out_channels
392
+
393
+ def forward(self, x, concat_tensors):
394
+ for i in range(self.n_decoders):
395
+ x = self.layers[i](x, concat_tensors[-1 - i])
396
+ return x
397
+
398
+
399
+ class DeepUnet(nn.Module):
400
+ def __init__(
401
+ self,
402
+ kernel_size,
403
+ n_blocks,
404
+ en_de_layers=5,
405
+ inter_layers=4,
406
+ in_channels=1,
407
+ en_out_channels=16,
408
+ ):
409
+ super(DeepUnet, self).__init__()
410
+ self.encoder = Encoder(
411
+ in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels
412
+ )
413
+ self.intermediate = Intermediate(
414
+ self.encoder.out_channel // 2,
415
+ self.encoder.out_channel,
416
+ inter_layers,
417
+ n_blocks,
418
+ )
419
+ self.decoder = Decoder(
420
+ self.encoder.out_channel, en_de_layers, kernel_size, n_blocks
421
+ )
422
+
423
+ def forward(self, x):
424
+ x, concat_tensors = self.encoder(x)
425
+ x = self.intermediate(x)
426
+ x = self.decoder(x, concat_tensors)
427
+ return x
428
+
429
+
430
+ class E2E(nn.Module):
431
+ def __init__(
432
+ self,
433
+ n_blocks,
434
+ n_gru,
435
+ kernel_size,
436
+ en_de_layers=5,
437
+ inter_layers=4,
438
+ in_channels=1,
439
+ en_out_channels=16,
440
+ ):
441
+ super(E2E, self).__init__()
442
+ self.unet = DeepUnet(
443
+ kernel_size,
444
+ n_blocks,
445
+ en_de_layers,
446
+ inter_layers,
447
+ in_channels,
448
+ en_out_channels,
449
+ )
450
+ self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
451
+ if n_gru:
452
+ self.fc = nn.Sequential(
453
+ BiGRU(3 * 128, 256, n_gru),
454
+ nn.Linear(512, 360),
455
+ nn.Dropout(0.25),
456
+ nn.Sigmoid(),
457
+ )
458
+ else:
459
+ self.fc = nn.Sequential(
460
+ nn.Linear(3 * nn.N_MELS, nn.N_CLASS), nn.Dropout(0.25), nn.Sigmoid()
461
+ )
462
+
463
+ def forward(self, mel):
464
+ # print(mel.shape)
465
+ mel = mel.transpose(-1, -2).unsqueeze(1)
466
+ x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
467
+ x = self.fc(x)
468
+ # print(x.shape)
469
+ return x
470
+
471
+
472
+ from librosa.filters import mel
473
+
474
+
475
+ class MelSpectrogram(torch.nn.Module):
476
+ def __init__(
477
+ self,
478
+ is_half,
479
+ n_mel_channels,
480
+ sampling_rate,
481
+ win_length,
482
+ hop_length,
483
+ n_fft=None,
484
+ mel_fmin=0,
485
+ mel_fmax=None,
486
+ clamp=1e-5,
487
+ ):
488
+ super().__init__()
489
+ n_fft = win_length if n_fft is None else n_fft
490
+ self.hann_window = {}
491
+ mel_basis = mel(
492
+ sr=sampling_rate,
493
+ n_fft=n_fft,
494
+ n_mels=n_mel_channels,
495
+ fmin=mel_fmin,
496
+ fmax=mel_fmax,
497
+ htk=True,
498
+ )
499
+ mel_basis = torch.from_numpy(mel_basis).float()
500
+ self.register_buffer("mel_basis", mel_basis)
501
+ self.n_fft = win_length if n_fft is None else n_fft
502
+ self.hop_length = hop_length
503
+ self.win_length = win_length
504
+ self.sampling_rate = sampling_rate
505
+ self.n_mel_channels = n_mel_channels
506
+ self.clamp = clamp
507
+ self.is_half = is_half
508
+
509
+ def forward(self, audio, keyshift=0, speed=1, center=True):
510
+ factor = 2 ** (keyshift / 12)
511
+ n_fft_new = int(np.round(self.n_fft * factor))
512
+ win_length_new = int(np.round(self.win_length * factor))
513
+ hop_length_new = int(np.round(self.hop_length * speed))
514
+ keyshift_key = str(keyshift) + "_" + str(audio.device)
515
+ if keyshift_key not in self.hann_window:
516
+ self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(
517
+ # "cpu"if(audio.device.type=="privateuseone") else audio.device
518
+ audio.device
519
+ )
520
+ if "privateuseone" in str(audio.device):
521
+ if not hasattr(self, "stft"):
522
+ self.stft = STFT(
523
+ filter_length=n_fft_new,
524
+ hop_length=hop_length_new,
525
+ win_length=win_length_new,
526
+ window="hann",
527
+ ).to(audio.device)
528
+ magnitude = self.stft.transform(audio)
529
+ else:
530
+ fft = torch.stft(
531
+ audio,
532
+ n_fft=n_fft_new,
533
+ hop_length=hop_length_new,
534
+ win_length=win_length_new,
535
+ window=self.hann_window[keyshift_key],
536
+ center=center,
537
+ return_complex=True,
538
+ )
539
+ magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
540
+ # if (audio.device.type == "privateuseone"):
541
+ # magnitude=magnitude.to(audio.device)
542
+ if keyshift != 0:
543
+ size = self.n_fft // 2 + 1
544
+ resize = magnitude.size(1)
545
+ if resize < size:
546
+ magnitude = F.pad(magnitude, (0, 0, 0, size - resize))
547
+ magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
548
+ mel_output = torch.matmul(self.mel_basis, magnitude)
549
+ if self.is_half == True:
550
+ mel_output = mel_output.half()
551
+ log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
552
+ # print(log_mel_spec.device.type)
553
+ return log_mel_spec
554
+
555
+
556
+ class RMVPE:
557
+ def __init__(self, model_path, is_half, device=None):
558
+ self.resample_kernel = {}
559
+ self.resample_kernel = {}
560
+ self.is_half = is_half
561
+ if device is None:
562
+ device = "cuda" if torch.cuda.is_available() else "cpu"
563
+ self.device = device
564
+ self.mel_extractor = MelSpectrogram(
565
+ is_half, 128, 16000, 1024, 160, None, 30, 8000
566
+ ).to(device)
567
+ if "privateuseone" in str(device):
568
+ import onnxruntime as ort
569
+
570
+ ort_session = ort.InferenceSession(
571
+ "%s/rmvpe.onnx" % os.environ["rmvpe_root"],
572
+ providers=["DmlExecutionProvider"],
573
+ )
574
+ self.model = ort_session
575
+ else:
576
+ model = E2E(4, 1, (2, 2))
577
+ ckpt = torch.load(model_path, map_location="cpu")
578
+ model.load_state_dict(ckpt)
579
+ model.eval()
580
+ if is_half == True:
581
+ model = model.half()
582
+ self.model = model
583
+ self.model = self.model.to(device)
584
+ cents_mapping = 20 * np.arange(360) + 1997.3794084376191
585
+ self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368
586
+
587
+ def mel2hidden(self, mel):
588
+ with torch.no_grad():
589
+ n_frames = mel.shape[-1]
590
+ n_pad = 32 * ((n_frames - 1) // 32 + 1) - n_frames
591
+ if n_pad > 0:
592
+ mel = F.pad(
593
+ mel, (0, n_pad), mode="constant"
594
+ )
595
+ if "privateuseone" in str(self.device):
596
+ onnx_input_name = self.model.get_inputs()[0].name
597
+ onnx_outputs_names = self.model.get_outputs()[0].name
598
+ hidden = self.model.run(
599
+ [onnx_outputs_names],
600
+ input_feed={onnx_input_name: mel.cpu().numpy()},
601
+ )[0]
602
+ else:
603
+ hidden = self.model(mel)
604
+ return hidden[:, :n_frames]
605
+
606
+ def decode(self, hidden, thred=0.03):
607
+ cents_pred = self.to_local_average_cents(hidden, thred=thred)
608
+ f0 = 10 * (2 ** (cents_pred / 1200))
609
+ f0[f0 == 10] = 0
610
+ # f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred])
611
+ return f0
612
+
613
+ def infer_from_audio(self, audio, thred=0.03):
614
+ # torch.cuda.synchronize()
615
+ t0 = ttime()
616
+ mel = self.mel_extractor(
617
+ torch.from_numpy(audio).float().to(self.device).unsqueeze(0), center=True
618
+ )
619
+ # print(123123123,mel.device.type)
620
+ # torch.cuda.synchronize()
621
+ t1 = ttime()
622
+ hidden = self.mel2hidden(mel)
623
+ # torch.cuda.synchronize()
624
+ t2 = ttime()
625
+ # print(234234,hidden.device.type)
626
+ if "privateuseone" not in str(self.device):
627
+ hidden = hidden.squeeze(0).cpu().numpy()
628
+ else:
629
+ hidden = hidden[0]
630
+ if self.is_half == True:
631
+ hidden = hidden.astype("float32")
632
+
633
+ f0 = self.decode(hidden, thred=thred)
634
+ # torch.cuda.synchronize()
635
+ t3 = ttime()
636
+ # print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
637
+ return f0
638
+
639
+ def infer_from_audio_with_pitch(self, audio, thred=0.03, f0_min=50, f0_max=1100):
640
+ t0 = ttime()
641
+ audio = torch.from_numpy(audio).float().to(self.device).unsqueeze(0)
642
+ mel = self.mel_extractor(audio, center=True)
643
+ t1 = ttime()
644
+ hidden = self.mel2hidden(mel)
645
+ t2 = ttime()
646
+ if "privateuseone" not in str(self.device):
647
+ hidden = hidden.squeeze(0).cpu().numpy()
648
+ else:
649
+ hidden = hidden[0]
650
+ if self.is_half == True:
651
+ hidden = hidden.astype("float32")
652
+ f0 = self.decode(hidden, thred=thred)
653
+ f0[(f0 < f0_min) | (f0 > f0_max)] = 0
654
+ t3 = ttime()
655
+ return f0
656
+
657
+ def to_local_average_cents(self, salience, thred=0.05):
658
+ # t0 = ttime()
659
+ center = np.argmax(salience, axis=1) # 帧长#index
660
+ salience = np.pad(salience, ((0, 0), (4, 4))) # 帧长,368
661
+ # t1 = ttime()
662
+ center += 4
663
+ todo_salience = []
664
+ todo_cents_mapping = []
665
+ starts = center - 4
666
+ ends = center + 5
667
+ for idx in range(salience.shape[0]):
668
+ todo_salience.append(salience[:, starts[idx] : ends[idx]][idx])
669
+ todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]])
670
+ # t2 = ttime()
671
+ todo_salience = np.array(todo_salience) # 帧长,9
672
+ todo_cents_mapping = np.array(todo_cents_mapping) # 帧长,9
673
+ product_sum = np.sum(todo_salience * todo_cents_mapping, 1)
674
+ weight_sum = np.sum(todo_salience, 1) # 帧长
675
+ devided = product_sum / weight_sum # 帧长
676
+ # t3 = ttime()
677
+ maxx = np.max(salience, axis=1) # 帧长
678
+ devided[maxx <= thred] = 0
679
+ # t4 = ttime()
680
+ # print("decode:%s\t%s\t%s\t%s" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
681
+ return devided
682
+
683
+
684
+ if __name__ == "__main__":
685
+ import librosa
686
+ import soundfile as sf
687
+
688
+ audio, sampling_rate = sf.read(r"C:\Users\liujing04\Desktop\Z\冬之花clip1.wav")
689
+ if len(audio.shape) > 1:
690
+ audio = librosa.to_mono(audio.transpose(1, 0))
691
+ audio_bak = audio.copy()
692
+ if sampling_rate != 16000:
693
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
694
+ model_path = r"D:\BaiduNetdiskDownload\RVC-beta-v2-0727AMD_realtime\rmvpe.pt"
695
+ thred = 0.03 # 0.01
696
+ device = "cuda" if torch.cuda.is_available() else "cpu"
697
+ rmvpe = RMVPE(model_path, is_half=False, device=device)
698
+ t0 = ttime()
699
+ f0 = rmvpe.infer_from_audio(audio, thred=thred)
700
+ # f0 = rmvpe.infer_from_audio(audio, thred=thred)
701
+ # f0 = rmvpe.infer_from_audio(audio, thred=thred)
702
+ # f0 = rmvpe.infer_from_audio(audio, thred=thred)
703
+ # f0 = rmvpe.infer_from_audio(audio, thred=thred)
704
+ t1 = ttime()
705
+ logger.info("%s %.2f", f0.shape, t1 - t0)
lib/modules.py ADDED
@@ -0,0 +1,559 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, sys
2
+ import traceback
3
+ import logging
4
+ now_dir = os.getcwd()
5
+ sys.path.append(now_dir)
6
+ logger = logging.getLogger(__name__)
7
+ import numpy as np
8
+ import soundfile as sf
9
+ import torch
10
+ from io import BytesIO
11
+ from lib.infer_libs.audio import load_audio
12
+ from lib.infer_libs.audio import wav2
13
+ from lib.infer_libs.infer_pack.models import (
14
+ SynthesizerTrnMs256NSFsid,
15
+ SynthesizerTrnMs256NSFsid_nono,
16
+ SynthesizerTrnMs768NSFsid,
17
+ SynthesizerTrnMs768NSFsid_nono,
18
+ )
19
+ from lib.pipeline import Pipeline
20
+ import time
21
+ import glob
22
+ from shutil import move
23
+ from fairseq import checkpoint_utils
24
+
25
+ sup_audioext = {
26
+ "wav",
27
+ "mp3",
28
+ "flac",
29
+ "ogg",
30
+ "opus",
31
+ "m4a",
32
+ "mp4",
33
+ "aac",
34
+ "alac",
35
+ "wma",
36
+ "aiff",
37
+ "webm",
38
+ "ac3",
39
+ }
40
+
41
+ def note_to_hz(note_name):
42
+ try:
43
+ SEMITONES = {'C': -9, 'C#': -8, 'D': -7, 'D#': -6, 'E': -5, 'F': -4, 'F#': -3, 'G': -2, 'G#': -1, 'A': 0, 'A#': 1, 'B': 2}
44
+ pitch_class, octave = note_name[:-1], int(note_name[-1])
45
+ semitone = SEMITONES[pitch_class]
46
+ note_number = 12 * (octave - 4) + semitone
47
+ frequency = 440.0 * (2.0 ** (1.0/12)) ** note_number
48
+ return frequency
49
+ except:
50
+ return None
51
+
52
+ def load_hubert(hubert_model_path, config):
53
+ models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
54
+ [hubert_model_path],
55
+ suffix="",
56
+ )
57
+ hubert_model = models[0]
58
+ hubert_model = hubert_model.to(config.device)
59
+ if config.is_half:
60
+ hubert_model = hubert_model.half()
61
+ else:
62
+ hubert_model = hubert_model.float()
63
+ return hubert_model.eval()
64
+
65
+ class VC:
66
+ def __init__(self, config):
67
+ self.n_spk = None
68
+ self.tgt_sr = None
69
+ self.net_g = None
70
+ self.pipeline = None
71
+ self.cpt = None
72
+ self.version = None
73
+ self.if_f0 = None
74
+ self.version = None
75
+ self.hubert_model = None
76
+
77
+ self.config = config
78
+
79
+ def get_vc(self, sid, *to_return_protect):
80
+ logger.info("Get sid: " + sid)
81
+
82
+ to_return_protect0 = {
83
+ "visible": self.if_f0 != 0,
84
+ "value": to_return_protect[0]
85
+ if self.if_f0 != 0 and to_return_protect
86
+ else 0.5,
87
+ "__type__": "update",
88
+ }
89
+ to_return_protect1 = {
90
+ "visible": self.if_f0 != 0,
91
+ "value": to_return_protect[1]
92
+ if self.if_f0 != 0 and to_return_protect
93
+ else 0.33,
94
+ "__type__": "update",
95
+ }
96
+
97
+ if sid == "" or sid == []:
98
+ if self.hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
99
+ logger.info("Clean model cache")
100
+ del (
101
+ self.net_g,
102
+ self.n_spk,
103
+ self.vc,
104
+ self.hubert_model,
105
+ self.tgt_sr,
106
+ ) # ,cpt
107
+ self.hubert_model = (
108
+ self.net_g
109
+ ) = self.n_spk = self.vc = self.hubert_model = self.tgt_sr = None
110
+ if torch.cuda.is_available():
111
+ torch.cuda.empty_cache()
112
+ ###楼下不这么折腾清理不干净
113
+ self.if_f0 = self.cpt.get("f0", 1)
114
+ self.version = self.cpt.get("version", "v1")
115
+ if self.version == "v1":
116
+ if self.if_f0 == 1:
117
+ self.net_g = SynthesizerTrnMs256NSFsid(
118
+ *self.cpt["config"], is_half=self.config.is_half
119
+ )
120
+ else:
121
+ self.net_g = SynthesizerTrnMs256NSFsid_nono(*self.cpt["config"])
122
+ elif self.version == "v2":
123
+ if self.if_f0 == 1:
124
+ self.net_g = SynthesizerTrnMs768NSFsid(
125
+ *self.cpt["config"], is_half=self.config.is_half
126
+ )
127
+ else:
128
+ self.net_g = SynthesizerTrnMs768NSFsid_nono(*self.cpt["config"])
129
+ del self.net_g, self.cpt
130
+ if torch.cuda.is_available():
131
+ torch.cuda.empty_cache()
132
+ return (
133
+ {"visible": False, "__type__": "update"},
134
+ {
135
+ "visible": True,
136
+ "value": to_return_protect0,
137
+ "__type__": "update",
138
+ },
139
+ {
140
+ "visible": True,
141
+ "value": to_return_protect1,
142
+ "__type__": "update",
143
+ },
144
+ "",
145
+ "",
146
+ )
147
+ #person = f'{os.getenv("weight_root")}/{sid}'
148
+ person = f'{sid}'
149
+ #logger.info(f"Loading: {person}")
150
+ logger.info(f"Loading...")
151
+ self.cpt = torch.load(person, map_location="cpu")
152
+ self.tgt_sr = self.cpt["config"][-1]
153
+ self.cpt["config"][-3] = self.cpt["weight"]["emb_g.weight"].shape[0] # n_spk
154
+ self.if_f0 = self.cpt.get("f0", 1)
155
+ self.version = self.cpt.get("version", "v1")
156
+
157
+ synthesizer_class = {
158
+ ("v1", 1): SynthesizerTrnMs256NSFsid,
159
+ ("v1", 0): SynthesizerTrnMs256NSFsid_nono,
160
+ ("v2", 1): SynthesizerTrnMs768NSFsid,
161
+ ("v2", 0): SynthesizerTrnMs768NSFsid_nono,
162
+ }
163
+
164
+ self.net_g = synthesizer_class.get(
165
+ (self.version, self.if_f0), SynthesizerTrnMs256NSFsid
166
+ )(*self.cpt["config"], is_half=self.config.is_half)
167
+
168
+ del self.net_g.enc_q
169
+
170
+ self.net_g.load_state_dict(self.cpt["weight"], strict=False)
171
+ self.net_g.eval().to(self.config.device)
172
+ if self.config.is_half:
173
+ self.net_g = self.net_g.half()
174
+ else:
175
+ self.net_g = self.net_g.float()
176
+
177
+ self.pipeline = Pipeline(self.tgt_sr, self.config)
178
+ n_spk = self.cpt["config"][-3]
179
+ #index = {"value": get_index_path_from_model(sid), "__type__": "update"}
180
+ #logger.info("Select index: " + index["value"])
181
+
182
+ return (
183
+ (
184
+ {"visible": False, "maximum": n_spk, "__type__": "update"},
185
+ to_return_protect0,
186
+ to_return_protect1
187
+ )
188
+ if to_return_protect
189
+ else {"visible": False, "maximum": n_spk, "__type__": "update"}
190
+ )
191
+
192
+ def vc_single_dont_save(
193
+ self,
194
+ sid,
195
+ input_audio_path1,
196
+ f0_up_key,
197
+ f0_method,
198
+ file_index,
199
+ file_index2,
200
+ index_rate,
201
+ filter_radius,
202
+ resample_sr,
203
+ rms_mix_rate,
204
+ protect,
205
+ crepe_hop_length,
206
+ do_formant,
207
+ quefrency,
208
+ timbre,
209
+ f0_min,
210
+ f0_max,
211
+ f0_autotune,
212
+ hubert_model_path = "assets/hubert/hubert_base.pt"
213
+ ):
214
+ """
215
+ Performs inference without saving
216
+
217
+ Parameters:
218
+ - sid (int)
219
+ - input_audio_path1 (str)
220
+ - f0_up_key (int)
221
+ - f0_method (str)
222
+ - file_index (str)
223
+ - file_index2 (str)
224
+ - index_rate (float)
225
+ - filter_radius (int)
226
+ - resample_sr (int)
227
+ - rms_mix_rate (float)
228
+ - protect (float)
229
+ - crepe_hop_length (int)
230
+ - do_formant (bool)
231
+ - quefrency (float)
232
+ - timbre (float)
233
+ - f0_min (str)
234
+ - f0_max (str)
235
+ - f0_autotune (bool)
236
+ - hubert_model_path (str)
237
+
238
+ Returns:
239
+ Tuple(Tuple(status, index_info, times), Tuple(sr, data)):
240
+ - Tuple(status, index_info, times):
241
+ - status (str): either "Success." or an error
242
+ - index_info (str): index path if used
243
+ - times (list): [npy_time, f0_time, infer_time, total_time]
244
+ - Tuple(sr, data): Audio data results.
245
+ """
246
+ global total_time
247
+ total_time = 0
248
+ start_time = time.time()
249
+
250
+ if not input_audio_path1:
251
+ return "You need to upload an audio", None
252
+
253
+ if not os.path.exists(input_audio_path1):
254
+ return "Audio was not properly selected or doesn't exist", None
255
+
256
+ f0_up_key = int(f0_up_key)
257
+ if not f0_min.isdigit():
258
+ f0_min = note_to_hz(f0_min)
259
+ if f0_min:
260
+ print(f"Converted Min pitch: freq - {f0_min}")
261
+ else:
262
+ f0_min = 50
263
+ print("Invalid minimum pitch note. Defaulting to 50hz.")
264
+ else:
265
+ f0_min = float(f0_min)
266
+ if not f0_max.isdigit():
267
+ f0_max = note_to_hz(f0_max)
268
+ if f0_max:
269
+ print(f"Converted Max pitch: freq - {f0_max}")
270
+ else:
271
+ f0_max = 1100
272
+ print("Invalid maximum pitch note. Defaulting to 1100hz.")
273
+ else:
274
+ f0_max = float(f0_max)
275
+
276
+ try:
277
+ print(f"Attempting to load {input_audio_path1}....")
278
+ audio = load_audio(file=input_audio_path1,
279
+ sr=16000,
280
+ DoFormant=do_formant,
281
+ Quefrency=quefrency,
282
+ Timbre=timbre)
283
+
284
+ audio_max = np.abs(audio).max() / 0.95
285
+ if audio_max > 1:
286
+ audio /= audio_max
287
+ times = [0, 0, 0]
288
+
289
+ if self.hubert_model is None:
290
+ self.hubert_model = load_hubert(hubert_model_path, self.config)
291
+
292
+ try:
293
+ self.if_f0 = self.cpt.get("f0", 1)
294
+ except NameError:
295
+ message = "Model was not properly selected"
296
+ print(message)
297
+ return message, None
298
+
299
+ if file_index and not file_index == "" and isinstance(file_index, str):
300
+ file_index = file_index.strip(" ") \
301
+ .strip('"') \
302
+ .strip("\n") \
303
+ .strip('"') \
304
+ .strip(" ") \
305
+ .replace("trained", "added")
306
+ elif file_index2:
307
+ file_index = file_index2
308
+ else:
309
+ file_index = ""
310
+
311
+ audio_opt = self.pipeline.pipeline(
312
+ self.hubert_model,
313
+ self.net_g,
314
+ sid,
315
+ audio,
316
+ input_audio_path1,
317
+ times,
318
+ f0_up_key,
319
+ f0_method,
320
+ file_index,
321
+ index_rate,
322
+ self.if_f0,
323
+ filter_radius,
324
+ self.tgt_sr,
325
+ resample_sr,
326
+ rms_mix_rate,
327
+ self.version,
328
+ protect,
329
+ crepe_hop_length,
330
+ f0_autotune,
331
+ f0_min=f0_min,
332
+ f0_max=f0_max
333
+ )
334
+
335
+ if self.tgt_sr != resample_sr >= 16000:
336
+ tgt_sr = resample_sr
337
+ else:
338
+ tgt_sr = self.tgt_sr
339
+ index_info = (
340
+ "Index: %s." % file_index
341
+ if isinstance(file_index, str) and os.path.exists(file_index)
342
+ else "Index not used."
343
+ )
344
+ end_time = time.time()
345
+ total_time = end_time - start_time
346
+ times.append(total_time)
347
+ return (
348
+ ("Success.", index_info, times),
349
+ (tgt_sr, audio_opt),
350
+ )
351
+ except:
352
+ info = traceback.format_exc()
353
+ logger.warn(info)
354
+ return (
355
+ (info, None, [None, None, None, None]),
356
+ (None, None)
357
+ )
358
+
359
+ def vc_single(
360
+ self,
361
+ sid,
362
+ input_audio_path1,
363
+ f0_up_key,
364
+ f0_method,
365
+ file_index,
366
+ file_index2,
367
+ index_rate,
368
+ filter_radius,
369
+ resample_sr,
370
+ rms_mix_rate,
371
+ protect,
372
+ format1,
373
+ crepe_hop_length,
374
+ do_formant,
375
+ quefrency,
376
+ timbre,
377
+ f0_min,
378
+ f0_max,
379
+ f0_autotune,
380
+ hubert_model_path = "assets/hubert/hubert_base.pt"
381
+ ):
382
+ """
383
+ Performs inference with saving
384
+
385
+ Parameters:
386
+ - sid (int)
387
+ - input_audio_path1 (str)
388
+ - f0_up_key (int)
389
+ - f0_method (str)
390
+ - file_index (str)
391
+ - file_index2 (str)
392
+ - index_rate (float)
393
+ - filter_radius (int)
394
+ - resample_sr (int)
395
+ - rms_mix_rate (float)
396
+ - protect (float)
397
+ - format1 (str)
398
+ - crepe_hop_length (int)
399
+ - do_formant (bool)
400
+ - quefrency (float)
401
+ - timbre (float)
402
+ - f0_min (str)
403
+ - f0_max (str)
404
+ - f0_autotune (bool)
405
+ - hubert_model_path (str)
406
+
407
+ Returns:
408
+ Tuple(Tuple(status, index_info, times), Tuple(sr, data), output_path):
409
+ - Tuple(status, index_info, times):
410
+ - status (str): either "Success." or an error
411
+ - index_info (str): index path if used
412
+ - times (list): [npy_time, f0_time, infer_time, total_time]
413
+ - Tuple(sr, data): Audio data results.
414
+ - output_path (str): Audio results path
415
+ """
416
+ global total_time
417
+ total_time = 0
418
+ start_time = time.time()
419
+
420
+ if not input_audio_path1:
421
+ return "You need to upload an audio", None, None
422
+
423
+ if not os.path.exists(input_audio_path1):
424
+ return "Audio was not properly selected or doesn't exist", None, None
425
+
426
+ f0_up_key = int(f0_up_key)
427
+ if not f0_min.isdigit():
428
+ f0_min = note_to_hz(f0_min)
429
+ if f0_min:
430
+ print(f"Converted Min pitch: freq - {f0_min}")
431
+ else:
432
+ f0_min = 50
433
+ print("Invalid minimum pitch note. Defaulting to 50hz.")
434
+ else:
435
+ f0_min = float(f0_min)
436
+ if not f0_max.isdigit():
437
+ f0_max = note_to_hz(f0_max)
438
+ if f0_max:
439
+ print(f"Converted Max pitch: freq - {f0_max}")
440
+ else:
441
+ f0_max = 1100
442
+ print("Invalid maximum pitch note. Defaulting to 1100hz.")
443
+ else:
444
+ f0_max = float(f0_max)
445
+
446
+ try:
447
+ print(f"Attempting to load {input_audio_path1}...")
448
+ audio = load_audio(file=input_audio_path1,
449
+ sr=16000,
450
+ DoFormant=do_formant,
451
+ Quefrency=quefrency,
452
+ Timbre=timbre)
453
+
454
+ audio_max = np.abs(audio).max() / 0.95
455
+ if audio_max > 1:
456
+ audio /= audio_max
457
+ times = [0, 0, 0]
458
+
459
+ if self.hubert_model is None:
460
+ self.hubert_model = load_hubert(hubert_model_path, self.config)
461
+
462
+ try:
463
+ self.if_f0 = self.cpt.get("f0", 1)
464
+ except NameError:
465
+ message = "Model was not properly selected"
466
+ print(message)
467
+ return message, None
468
+ if file_index and not file_index == "" and isinstance(file_index, str):
469
+ file_index = file_index.strip(" ") \
470
+ .strip('"') \
471
+ .strip("\n") \
472
+ .strip('"') \
473
+ .strip(" ") \
474
+ .replace("trained", "added")
475
+ elif file_index2:
476
+ file_index = file_index2
477
+ else:
478
+ file_index = ""
479
+
480
+ audio_opt = self.pipeline.pipeline(
481
+ self.hubert_model,
482
+ self.net_g,
483
+ sid,
484
+ audio,
485
+ input_audio_path1,
486
+ times,
487
+ f0_up_key,
488
+ f0_method,
489
+ file_index,
490
+ index_rate,
491
+ self.if_f0,
492
+ filter_radius,
493
+ self.tgt_sr,
494
+ resample_sr,
495
+ rms_mix_rate,
496
+ self.version,
497
+ protect,
498
+ crepe_hop_length,
499
+ f0_autotune,
500
+ f0_min=f0_min,
501
+ f0_max=f0_max
502
+ )
503
+
504
+ if self.tgt_sr != resample_sr >= 16000:
505
+ tgt_sr = resample_sr
506
+ else:
507
+ tgt_sr = self.tgt_sr
508
+ index_info = (
509
+ "Index: %s." % file_index
510
+ if isinstance(file_index, str) and os.path.exists(file_index)
511
+ else "Index not used."
512
+ )
513
+
514
+ opt_root = os.path.join(os.getcwd(), "output")
515
+ os.makedirs(opt_root, exist_ok=True)
516
+ output_count = 1
517
+
518
+ while True:
519
+ opt_filename = f"{os.path.splitext(os.path.basename(input_audio_path1))[0]}{os.path.basename(os.path.dirname(file_index))}{f0_method.capitalize()}_{output_count}.{format1}"
520
+ current_output_path = os.path.join(opt_root, opt_filename)
521
+ if not os.path.exists(current_output_path):
522
+ break
523
+ output_count += 1
524
+ try:
525
+ if format1 in ["wav", "flac"]:
526
+ sf.write(
527
+ current_output_path,
528
+ audio_opt,
529
+ self.tgt_sr,
530
+ )
531
+ else:
532
+ with BytesIO() as wavf:
533
+ sf.write(
534
+ wavf,
535
+ audio_opt,
536
+ self.tgt_sr,
537
+ format="wav"
538
+ )
539
+ wavf.seek(0, 0)
540
+ with open(current_output_path, "wb") as outf:
541
+ wav2(wavf, outf, format1)
542
+ except:
543
+ info = traceback.format_exc()
544
+ end_time = time.time()
545
+ total_time = end_time - start_time
546
+ times.append(total_time)
547
+ return (
548
+ ("Success.", index_info, times),
549
+ (tgt_sr, audio_opt),
550
+ current_output_path
551
+ )
552
+ except:
553
+ info = traceback.format_exc()
554
+ logger.warn(info)
555
+ return (
556
+ (info, None, [None, None, None, None]),
557
+ (None, None),
558
+ None
559
+ )
lib/pipeline.py ADDED
@@ -0,0 +1,773 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import gc
4
+ import traceback
5
+ import logging
6
+
7
+ logger = logging.getLogger(__name__)
8
+
9
+ from functools import lru_cache
10
+ from time import time as ttime
11
+ from torch import Tensor
12
+ import faiss
13
+ import librosa
14
+ import numpy as np
15
+ import parselmouth
16
+ import pyworld
17
+ import torch.nn.functional as F
18
+ from scipy import signal
19
+ from tqdm import tqdm
20
+
21
+ import random
22
+ now_dir = os.getcwd()
23
+ sys.path.append(now_dir)
24
+ import re
25
+ from functools import partial
26
+ bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
27
+
28
+ input_audio_path2wav = {}
29
+ import torchcrepe # Fork Feature. Crepe algo for training and preprocess
30
+ from torchfcpe import spawn_bundled_infer_model
31
+ import torch
32
+ from lib.infer_libs.rmvpe import RMVPE
33
+ from lib.infer_libs.fcpe import FCPE
34
+
35
+ @lru_cache
36
+ def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
37
+ audio = input_audio_path2wav[input_audio_path]
38
+ f0, t = pyworld.harvest(
39
+ audio,
40
+ fs=fs,
41
+ f0_ceil=f0max,
42
+ f0_floor=f0min,
43
+ frame_period=frame_period,
44
+ )
45
+ f0 = pyworld.stonemask(audio, f0, t, fs)
46
+ return f0
47
+
48
+
49
+ def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
50
+ # print(data1.max(),data2.max())
51
+ rms1 = librosa.feature.rms(
52
+ y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
53
+ ) # 每半秒一个点
54
+ rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
55
+ rms1 = torch.from_numpy(rms1)
56
+ rms1 = F.interpolate(
57
+ rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
58
+ ).squeeze()
59
+ rms2 = torch.from_numpy(rms2)
60
+ rms2 = F.interpolate(
61
+ rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
62
+ ).squeeze()
63
+ rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
64
+ data2 *= (
65
+ torch.pow(rms1, torch.tensor(1 - rate))
66
+ * torch.pow(rms2, torch.tensor(rate - 1))
67
+ ).numpy()
68
+ return data2
69
+
70
+
71
+ class Pipeline(object):
72
+ def __init__(self, tgt_sr, config):
73
+ self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
74
+ config.x_pad,
75
+ config.x_query,
76
+ config.x_center,
77
+ config.x_max,
78
+ config.is_half,
79
+ )
80
+ self.sr = 16000 # hubert输入采样率
81
+ self.window = 160 # 每帧点数
82
+ self.t_pad = self.sr * self.x_pad # 每条前后pad时间
83
+ self.t_pad_tgt = tgt_sr * self.x_pad
84
+ self.t_pad2 = self.t_pad * 2
85
+ self.t_query = self.sr * self.x_query # 查询切点前后查询时间
86
+ self.t_center = self.sr * self.x_center # 查询切点位置
87
+ self.t_max = self.sr * self.x_max # 免查询时长阈值
88
+ self.device = config.device
89
+ self.model_rmvpe = RMVPE(os.environ["rmvpe_model_path"], is_half=self.is_half, device=self.device)
90
+
91
+ self.note_dict = [
92
+ 65.41, 69.30, 73.42, 77.78, 82.41, 87.31,
93
+ 92.50, 98.00, 103.83, 110.00, 116.54, 123.47,
94
+ 130.81, 138.59, 146.83, 155.56, 164.81, 174.61,
95
+ 185.00, 196.00, 207.65, 220.00, 233.08, 246.94,
96
+ 261.63, 277.18, 293.66, 311.13, 329.63, 349.23,
97
+ 369.99, 392.00, 415.30, 440.00, 466.16, 493.88,
98
+ 523.25, 554.37, 587.33, 622.25, 659.25, 698.46,
99
+ 739.99, 783.99, 830.61, 880.00, 932.33, 987.77,
100
+ 1046.50, 1108.73, 1174.66, 1244.51, 1318.51, 1396.91,
101
+ 1479.98, 1567.98, 1661.22, 1760.00, 1864.66, 1975.53,
102
+ 2093.00, 2217.46, 2349.32, 2489.02, 2637.02, 2793.83,
103
+ 2959.96, 3135.96, 3322.44, 3520.00, 3729.31, 3951.07
104
+ ]
105
+
106
+ # Fork Feature: Get the best torch device to use for f0 algorithms that require a torch device. Will return the type (torch.device)
107
+ def get_optimal_torch_device(self, index: int = 0) -> torch.device:
108
+ if torch.cuda.is_available():
109
+ return torch.device(
110
+ f"cuda:{index % torch.cuda.device_count()}"
111
+ ) # Very fast
112
+ elif torch.backends.mps.is_available():
113
+ return torch.device("mps")
114
+ return torch.device("cpu")
115
+
116
+ # Fork Feature: Compute f0 with the crepe method
117
+ def get_f0_crepe_computation(
118
+ self,
119
+ x,
120
+ f0_min,
121
+ f0_max,
122
+ p_len,
123
+ *args, # 512 before. Hop length changes the speed that the voice jumps to a different dramatic pitch. Lower hop lengths means more pitch accuracy but longer inference time.
124
+ **kwargs, # Either use crepe-tiny "tiny" or crepe "full". Default is full
125
+ ):
126
+ x = x.astype(
127
+ np.float32
128
+ ) # fixes the F.conv2D exception. We needed to convert double to float.
129
+ x /= np.quantile(np.abs(x), 0.999)
130
+ torch_device = self.get_optimal_torch_device()
131
+ audio = torch.from_numpy(x).to(torch_device, copy=True)
132
+ audio = torch.unsqueeze(audio, dim=0)
133
+ if audio.ndim == 2 and audio.shape[0] > 1:
134
+ audio = torch.mean(audio, dim=0, keepdim=True).detach()
135
+ audio = audio.detach()
136
+ hop_length = kwargs.get('crepe_hop_length', 160)
137
+ model = kwargs.get('model', 'full')
138
+ print("Initiating prediction with a crepe_hop_length of: " + str(hop_length))
139
+ pitch: Tensor = torchcrepe.predict(
140
+ audio,
141
+ self.sr,
142
+ hop_length,
143
+ f0_min,
144
+ f0_max,
145
+ model,
146
+ batch_size=hop_length * 2,
147
+ device=torch_device,
148
+ pad=True,
149
+ )
150
+ p_len = p_len or x.shape[0] // hop_length
151
+ # Resize the pitch for final f0
152
+ source = np.array(pitch.squeeze(0).cpu().float().numpy())
153
+ source[source < 0.001] = np.nan
154
+ target = np.interp(
155
+ np.arange(0, len(source) * p_len, len(source)) / p_len,
156
+ np.arange(0, len(source)),
157
+ source,
158
+ )
159
+ f0 = np.nan_to_num(target)
160
+ return f0 # Resized f0
161
+
162
+ def get_f0_official_crepe_computation(
163
+ self,
164
+ x,
165
+ f0_min,
166
+ f0_max,
167
+ *args,
168
+ **kwargs
169
+ ):
170
+ # Pick a batch size that doesn't cause memory errors on your gpu
171
+ batch_size = 512
172
+ # Compute pitch using first gpu
173
+ audio = torch.tensor(np.copy(x))[None].float()
174
+ model = kwargs.get('model', 'full')
175
+ f0, pd = torchcrepe.predict(
176
+ audio,
177
+ self.sr,
178
+ self.window,
179
+ f0_min,
180
+ f0_max,
181
+ model,
182
+ batch_size=batch_size,
183
+ device=self.device,
184
+ return_periodicity=True,
185
+ )
186
+ pd = torchcrepe.filter.median(pd, 3)
187
+ f0 = torchcrepe.filter.mean(f0, 3)
188
+ f0[pd < 0.1] = 0
189
+ f0 = f0[0].cpu().numpy()
190
+ return f0
191
+
192
+ # Fork Feature: Compute pYIN f0 method
193
+ def get_f0_pyin_computation(self, x, f0_min, f0_max):
194
+ y, sr = librosa.load(x, sr=self.sr, mono=True)
195
+ f0, _, _ = librosa.pyin(y, fmin=f0_min, fmax=f0_max, sr=self.sr)
196
+ f0 = f0[1:] # Get rid of extra first frame
197
+ return f0
198
+
199
+ def get_rmvpe(self, x, *args, **kwargs):
200
+ if not hasattr(self, "model_rmvpe"):
201
+ from lib.infer.infer_libs.rmvpe import RMVPE
202
+
203
+ logger.info(
204
+ f"Loading rmvpe model, {os.environ['rmvpe_model_path']}"
205
+ )
206
+ self.model_rmvpe = RMVPE(
207
+ os.environ["rmvpe_model_path"],
208
+ is_half=self.is_half,
209
+ device=self.device,
210
+ )
211
+ f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
212
+
213
+ if "privateuseone" in str(self.device): # clean ortruntime memory
214
+ del self.model_rmvpe.model
215
+ del self.model_rmvpe
216
+ logger.info("Cleaning ortruntime memory")
217
+
218
+ return f0
219
+
220
+
221
+ def get_pitch_dependant_rmvpe(self, x, f0_min=1, f0_max=40000, *args, **kwargs):
222
+ if not hasattr(self, "model_rmvpe"):
223
+ from lib.infer.infer_libs.rmvpe import RMVPE
224
+
225
+ logger.info(
226
+ f"Loading rmvpe model, {os.environ['rmvpe_model_path']}"
227
+ )
228
+ self.model_rmvpe = RMVPE(
229
+ os.environ["rmvpe_model_path"],
230
+ is_half=self.is_half,
231
+ device=self.device,
232
+ )
233
+ f0 = self.model_rmvpe.infer_from_audio_with_pitch(x, thred=0.03, f0_min=f0_min, f0_max=f0_max)
234
+ if "privateuseone" in str(self.device): # clean ortruntime memory
235
+ del self.model_rmvpe.model
236
+ del self.model_rmvpe
237
+ logger.info("Cleaning ortruntime memory")
238
+
239
+ return f0
240
+
241
+ def get_fcpe(self, x, f0_min, f0_max, p_len, *args, **kwargs):
242
+ self.model_fcpe = FCPE(os.environ["fcpe_model_path"], f0_min=f0_min, f0_max=f0_max, dtype=torch.float32, device=self.device, sampling_rate=self.sr, threshold=0.03)
243
+ f0 = self.model_fcpe.compute_f0(x, p_len=p_len)
244
+ del self.model_fcpe
245
+ gc.collect()
246
+ return f0
247
+
248
+ def get_torchfcpe(self, x, sr, f0_min, f0_max, p_len, *args, **kwargs):
249
+ self.model_torchfcpe = spawn_bundled_infer_model(device=self.device)
250
+ f0 = self.model_torchfcpe.infer(
251
+ torch.from_numpy(x).float().unsqueeze(0).unsqueeze(-1).to(self.device),
252
+ sr=sr,
253
+ decoder_mode="local_argmax",
254
+ threshold=0.006,
255
+ f0_min=f0_min,
256
+ f0_max=f0_max,
257
+ output_interp_target_length=p_len
258
+ )
259
+ return f0.squeeze().cpu().numpy()
260
+
261
+ def autotune_f0(self, f0):
262
+ autotuned_f0 = []
263
+ for freq in f0:
264
+ closest_notes = [x for x in self.note_dict if abs(x - freq) == min(abs(n - freq) for n in self.note_dict)]
265
+ autotuned_f0.append(random.choice(closest_notes))
266
+ return np.array(autotuned_f0, np.float64)
267
+
268
+
269
+ # Fork Feature: Acquire median hybrid f0 estimation calculation
270
+ def get_f0_hybrid_computation(
271
+ self,
272
+ methods_str,
273
+ input_audio_path,
274
+ x,
275
+ f0_min,
276
+ f0_max,
277
+ p_len,
278
+ filter_radius,
279
+ crepe_hop_length,
280
+ time_step,
281
+ ):
282
+ # Get various f0 methods from input to use in the computation stack
283
+ methods_str = re.search('hybrid\[(.+)\]', methods_str)
284
+ if methods_str: # Ensure a match was found
285
+ methods = [method.strip() for method in methods_str.group(1).split('+')]
286
+ f0_computation_stack = []
287
+
288
+ print("Calculating f0 pitch estimations for methods: %s" % str(methods))
289
+ x = x.astype(np.float32)
290
+ x /= np.quantile(np.abs(x), 0.999)
291
+ # Get f0 calculations for all methods specified
292
+ for method in methods:
293
+ f0 = None
294
+ if method == "pm":
295
+ f0 = (
296
+ parselmouth.Sound(x, self.sr)
297
+ .to_pitch_ac(
298
+ time_step=time_step / 1000,
299
+ voicing_threshold=0.6,
300
+ pitch_floor=f0_min,
301
+ pitch_ceiling=f0_max,
302
+ )
303
+ .selected_array["frequency"]
304
+ )
305
+ pad_size = (p_len - len(f0) + 1) // 2
306
+ if pad_size > 0 or p_len - len(f0) - pad_size > 0:
307
+ f0 = np.pad(
308
+ f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
309
+ )
310
+ elif method == "crepe":
311
+ f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="full")
312
+ f0 = f0[1:]
313
+ elif method == "crepe-tiny":
314
+ f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="tiny")
315
+ f0 = f0[1:] # Get rid of extra first frame
316
+ elif method == "mangio-crepe":
317
+ f0 = self.get_f0_crepe_computation(
318
+ x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length
319
+ )
320
+ elif method == "mangio-crepe-tiny":
321
+ f0 = self.get_f0_crepe_computation(
322
+ x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length, model="tiny"
323
+ )
324
+ elif method == "harvest":
325
+ input_audio_path2wav[input_audio_path] = x.astype(np.double)
326
+ f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
327
+ if filter_radius > 2:
328
+ f0 = signal.medfilt(f0, 3)
329
+ elif method == "dio":
330
+ f0, t = pyworld.dio(
331
+ x.astype(np.double),
332
+ fs=self.sr,
333
+ f0_ceil=f0_max,
334
+ f0_floor=f0_min,
335
+ frame_period=10,
336
+ )
337
+ f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
338
+ f0 = signal.medfilt(f0, 3)
339
+ f0 = f0[1:]
340
+ elif method == "rmvpe":
341
+ f0 = self.get_rmvpe(x)
342
+ f0 = f0[1:]
343
+ elif method == "fcpe_legacy":
344
+ f0 = self.get_fcpe(x, f0_min=f0_min, f0_max=f0_max, p_len=p_len)
345
+ elif method == "fcpe":
346
+ f0 = self.get_torchfcpe(x, self.sr, f0_min, f0_max, p_len)
347
+ elif method == "pyin":
348
+ f0 = self.get_f0_pyin_computation(input_audio_path, f0_min, f0_max)
349
+ # Push method to the stack
350
+ f0_computation_stack.append(f0)
351
+
352
+ for fc in f0_computation_stack:
353
+ print(len(fc))
354
+
355
+ print("Calculating hybrid median f0 from the stack of: %s" % str(methods))
356
+ f0_median_hybrid = None
357
+ if len(f0_computation_stack) == 1:
358
+ f0_median_hybrid = f0_computation_stack[0]
359
+ else:
360
+ f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0)
361
+ return f0_median_hybrid
362
+
363
+ def get_f0(
364
+ self,
365
+ input_audio_path,
366
+ x,
367
+ p_len,
368
+ f0_up_key,
369
+ f0_method,
370
+ filter_radius,
371
+ crepe_hop_length,
372
+ f0_autotune,
373
+ inp_f0=None,
374
+ f0_min=50,
375
+ f0_max=1100,
376
+ ):
377
+ global input_audio_path2wav
378
+ time_step = self.window / self.sr * 1000
379
+ f0_min = f0_min
380
+ f0_max = f0_max
381
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
382
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
383
+
384
+ if f0_method == "pm":
385
+ f0 = (
386
+ parselmouth.Sound(x, self.sr)
387
+ .to_pitch_ac(
388
+ time_step=time_step / 1000,
389
+ voicing_threshold=0.6,
390
+ pitch_floor=f0_min,
391
+ pitch_ceiling=f0_max,
392
+ )
393
+ .selected_array["frequency"]
394
+ )
395
+ pad_size = (p_len - len(f0) + 1) // 2
396
+ if pad_size > 0 or p_len - len(f0) - pad_size > 0:
397
+ f0 = np.pad(
398
+ f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
399
+ )
400
+ elif f0_method == "harvest":
401
+ input_audio_path2wav[input_audio_path] = x.astype(np.double)
402
+ f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
403
+ if filter_radius > 2:
404
+ f0 = signal.medfilt(f0, 3)
405
+ elif f0_method == "dio": # Potentially Buggy?
406
+ f0, t = pyworld.dio(
407
+ x.astype(np.double),
408
+ fs=self.sr,
409
+ f0_ceil=f0_max,
410
+ f0_floor=f0_min,
411
+ frame_period=10,
412
+ )
413
+ f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
414
+ f0 = signal.medfilt(f0, 3)
415
+ elif f0_method == "crepe":
416
+ model = "full"
417
+ # Pick a batch size that doesn't cause memory errors on your gpu
418
+ batch_size = 512
419
+ # Compute pitch using first gpu
420
+ audio = torch.tensor(np.copy(x))[None].float()
421
+ f0, pd = torchcrepe.predict(
422
+ audio,
423
+ self.sr,
424
+ self.window,
425
+ f0_min,
426
+ f0_max,
427
+ model,
428
+ batch_size=batch_size,
429
+ device=self.device,
430
+ return_periodicity=True,
431
+ )
432
+ pd = torchcrepe.filter.median(pd, 3)
433
+ f0 = torchcrepe.filter.mean(f0, 3)
434
+ f0[pd < 0.1] = 0
435
+ f0 = f0[0].cpu().numpy()
436
+ elif f0_method == "crepe-tiny":
437
+ f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="tiny")
438
+ elif f0_method == "mangio-crepe":
439
+ f0 = self.get_f0_crepe_computation(
440
+ x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length
441
+ )
442
+ elif f0_method == "mangio-crepe-tiny":
443
+ f0 = self.get_f0_crepe_computation(
444
+ x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length, model="tiny"
445
+ )
446
+ elif f0_method == "rmvpe":
447
+ if not hasattr(self, "model_rmvpe"):
448
+ from lib.infer.infer_libs.rmvpe import RMVPE
449
+
450
+ logger.info(
451
+ f"Loading rmvpe model, {os.environ['rmvpe_model_path']}"
452
+ )
453
+ self.model_rmvpe = RMVPE(
454
+ os.environ["rmvpe_model_path"],
455
+ is_half=self.is_half,
456
+ device=self.device,
457
+ )
458
+ f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
459
+
460
+ if "privateuseone" in str(self.device): # clean ortruntime memory
461
+ del self.model_rmvpe.model
462
+ del self.model_rmvpe
463
+ logger.info("Cleaning ortruntime memory")
464
+ elif f0_method == "rmvpe+":
465
+ params = {'x': x, 'p_len': p_len, 'f0_up_key': f0_up_key, 'f0_min': f0_min,
466
+ 'f0_max': f0_max, 'time_step': time_step, 'filter_radius': filter_radius,
467
+ 'crepe_hop_length': crepe_hop_length, 'model': "full"
468
+ }
469
+ f0 = self.get_pitch_dependant_rmvpe(**params)
470
+ elif f0_method == "pyin":
471
+ f0 = self.get_f0_pyin_computation(input_audio_path, f0_min, f0_max)
472
+ elif f0_method == "fcpe_legacy":
473
+ f0 = self.get_fcpe(x, f0_min=f0_min, f0_max=f0_max, p_len=p_len)
474
+ elif f0_method == "fcpe":
475
+ f0 = self.get_torchfcpe(x, self.sr, f0_min, f0_max, p_len)
476
+ elif "hybrid" in f0_method:
477
+ # Perform hybrid median pitch estimation
478
+ input_audio_path2wav[input_audio_path] = x.astype(np.double)
479
+ f0 = self.get_f0_hybrid_computation(
480
+ f0_method,
481
+ input_audio_path,
482
+ x,
483
+ f0_min,
484
+ f0_max,
485
+ p_len,
486
+ filter_radius,
487
+ crepe_hop_length,
488
+ time_step,
489
+ )
490
+ #print("Autotune:", f0_autotune)
491
+ if f0_autotune == True:
492
+ print("Autotune:", f0_autotune)
493
+ f0 = self.autotune_f0(f0)
494
+
495
+ f0 *= pow(2, f0_up_key / 12)
496
+ # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
497
+ tf0 = self.sr // self.window # 每秒f0点数
498
+ if inp_f0 is not None:
499
+ delta_t = np.round(
500
+ (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
501
+ ).astype("int16")
502
+ replace_f0 = np.interp(
503
+ list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
504
+ )
505
+ shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
506
+ f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
507
+ :shape
508
+ ]
509
+ # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
510
+ f0bak = f0.copy()
511
+ f0_mel = 1127 * np.log(1 + f0 / 700)
512
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
513
+ f0_mel_max - f0_mel_min
514
+ ) + 1
515
+ f0_mel[f0_mel <= 1] = 1
516
+ f0_mel[f0_mel > 255] = 255
517
+ f0_coarse = np.rint(f0_mel).astype(np.int32)
518
+ return f0_coarse, f0bak # 1-0
519
+
520
+ def vc(
521
+ self,
522
+ model,
523
+ net_g,
524
+ sid,
525
+ audio0,
526
+ pitch,
527
+ pitchf,
528
+ times,
529
+ index,
530
+ big_npy,
531
+ index_rate,
532
+ version,
533
+ protect,
534
+ ): # ,file_index,file_big_npy
535
+ feats = torch.from_numpy(audio0)
536
+ if self.is_half:
537
+ feats = feats.half()
538
+ else:
539
+ feats = feats.float()
540
+ if feats.dim() == 2: # double channels
541
+ feats = feats.mean(-1)
542
+ assert feats.dim() == 1, feats.dim()
543
+ feats = feats.view(1, -1)
544
+ padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
545
+
546
+ inputs = {
547
+ "source": feats.to(self.device),
548
+ "padding_mask": padding_mask,
549
+ "output_layer": 9 if version == "v1" else 12,
550
+ }
551
+ t0 = ttime()
552
+ with torch.no_grad():
553
+ logits = model.extract_features(**inputs)
554
+ feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
555
+ if protect < 0.5 and pitch is not None and pitchf is not None:
556
+ feats0 = feats.clone()
557
+ if (
558
+ not isinstance(index, type(None))
559
+ and not isinstance(big_npy, type(None))
560
+ and index_rate != 0
561
+ ):
562
+ npy = feats[0].cpu().numpy()
563
+ if self.is_half:
564
+ npy = npy.astype("float32")
565
+
566
+ # _, I = index.search(npy, 1)
567
+ # npy = big_npy[I.squeeze()]
568
+
569
+ score, ix = index.search(npy, k=8)
570
+ weight = np.square(1 / score)
571
+ weight /= weight.sum(axis=1, keepdims=True)
572
+ npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
573
+
574
+ if self.is_half:
575
+ npy = npy.astype("float16")
576
+ feats = (
577
+ torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
578
+ + (1 - index_rate) * feats
579
+ )
580
+
581
+ feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
582
+ if protect < 0.5 and pitch is not None and pitchf is not None:
583
+ feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
584
+ 0, 2, 1
585
+ )
586
+ t1 = ttime()
587
+ p_len = audio0.shape[0] // self.window
588
+ if feats.shape[1] < p_len:
589
+ p_len = feats.shape[1]
590
+ if pitch is not None and pitchf is not None:
591
+ pitch = pitch[:, :p_len]
592
+ pitchf = pitchf[:, :p_len]
593
+
594
+ if protect < 0.5 and pitch is not None and pitchf is not None:
595
+ pitchff = pitchf.clone()
596
+ pitchff[pitchf > 0] = 1
597
+ pitchff[pitchf < 1] = protect
598
+ pitchff = pitchff.unsqueeze(-1)
599
+ feats = feats * pitchff + feats0 * (1 - pitchff)
600
+ feats = feats.to(feats0.dtype)
601
+ p_len = torch.tensor([p_len], device=self.device).long()
602
+ with torch.no_grad():
603
+ hasp = pitch is not None and pitchf is not None
604
+ arg = (feats, p_len, pitch, pitchf, sid) if hasp else (feats, p_len, sid)
605
+ audio1 = (net_g.infer(*arg)[0][0, 0]).data.cpu().float().numpy()
606
+ del hasp, arg
607
+ del feats, p_len, padding_mask
608
+ if torch.cuda.is_available():
609
+ torch.cuda.empty_cache()
610
+ t2 = ttime()
611
+ times[0] += t1 - t0
612
+ times[2] += t2 - t1
613
+ return audio1
614
+ def process_t(self, t, s, window, audio_pad, pitch, pitchf, times, index, big_npy, index_rate, version, protect, t_pad_tgt, if_f0, sid, model, net_g):
615
+ t = t // window * window
616
+ if if_f0 == 1:
617
+ return self.vc(
618
+ model,
619
+ net_g,
620
+ sid,
621
+ audio_pad[s : t + t_pad_tgt + window],
622
+ pitch[:, s // window : (t + t_pad_tgt) // window],
623
+ pitchf[:, s // window : (t + t_pad_tgt) // window],
624
+ times,
625
+ index,
626
+ big_npy,
627
+ index_rate,
628
+ version,
629
+ protect,
630
+ )[t_pad_tgt : -t_pad_tgt]
631
+ else:
632
+ return self.vc(
633
+ model,
634
+ net_g,
635
+ sid,
636
+ audio_pad[s : t + t_pad_tgt + window],
637
+ None,
638
+ None,
639
+ times,
640
+ index,
641
+ big_npy,
642
+ index_rate,
643
+ version,
644
+ protect,
645
+ )[t_pad_tgt : -t_pad_tgt]
646
+
647
+
648
+ def pipeline(
649
+ self,
650
+ model,
651
+ net_g,
652
+ sid,
653
+ audio,
654
+ input_audio_path,
655
+ times,
656
+ f0_up_key,
657
+ f0_method,
658
+ file_index,
659
+ index_rate,
660
+ if_f0,
661
+ filter_radius,
662
+ tgt_sr,
663
+ resample_sr,
664
+ rms_mix_rate,
665
+ version,
666
+ protect,
667
+ crepe_hop_length,
668
+ f0_autotune,
669
+ f0_min=50,
670
+ f0_max=1100
671
+ ):
672
+ if (
673
+ file_index != ""
674
+ and isinstance(file_index, str)
675
+ # and file_big_npy != ""
676
+ # and os.path.exists(file_big_npy) == True
677
+ and os.path.exists(file_index)
678
+ and index_rate != 0
679
+ ):
680
+ try:
681
+ index = faiss.read_index(file_index)
682
+ # big_npy = np.load(file_big_npy)
683
+ big_npy = index.reconstruct_n(0, index.ntotal)
684
+ except:
685
+ traceback.print_exc()
686
+ index = big_npy = None
687
+ else:
688
+ index = big_npy = None
689
+ audio = signal.filtfilt(bh, ah, audio)
690
+ audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
691
+ opt_ts = []
692
+ if audio_pad.shape[0] > self.t_max:
693
+ audio_sum = np.zeros_like(audio)
694
+ for i in range(self.window):
695
+ audio_sum += audio_pad[i : i - self.window]
696
+ for t in range(self.t_center, audio.shape[0], self.t_center):
697
+ opt_ts.append(
698
+ t
699
+ - self.t_query
700
+ + np.where(
701
+ np.abs(audio_sum[t - self.t_query : t + self.t_query])
702
+ == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
703
+ )[0][0]
704
+ )
705
+ s = 0
706
+ audio_opt = []
707
+ t = None
708
+ t1 = ttime()
709
+ audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
710
+ p_len = audio_pad.shape[0] // self.window
711
+ inp_f0 = None
712
+
713
+ sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
714
+ pitch, pitchf = None, None
715
+ if if_f0:
716
+ pitch, pitchf = self.get_f0(
717
+ input_audio_path,
718
+ audio_pad,
719
+ p_len,
720
+ f0_up_key,
721
+ f0_method,
722
+ filter_radius,
723
+ crepe_hop_length,
724
+ f0_autotune,
725
+ inp_f0,
726
+ f0_min,
727
+ f0_max
728
+ )
729
+ pitch = pitch[:p_len]
730
+ pitchf = pitchf[:p_len]
731
+ if "mps" not in str(self.device) or "xpu" not in str(self.device):
732
+ pitchf = pitchf.astype(np.float32)
733
+ pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
734
+ pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
735
+ t2 = ttime()
736
+ times[1] += t2 - t1
737
+
738
+ with tqdm(total=len(opt_ts), desc="Processing", unit="window") as pbar:
739
+ for i, t in enumerate(opt_ts):
740
+ t = t // self.window * self.window
741
+ start = s
742
+ end = t + self.t_pad2 + self.window
743
+ audio_slice = audio_pad[start:end]
744
+ pitch_slice = pitch[:, start // self.window:end // self.window] if if_f0 else None
745
+ pitchf_slice = pitchf[:, start // self.window:end // self.window] if if_f0 else None
746
+ audio_opt.append(self.vc(model, net_g, sid, audio_slice, pitch_slice, pitchf_slice, times, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
747
+ s = t
748
+ pbar.update(1)
749
+ pbar.refresh()
750
+
751
+ audio_slice = audio_pad[t:]
752
+ pitch_slice = pitch[:, t // self.window:] if if_f0 and t is not None else pitch
753
+ pitchf_slice = pitchf[:, t // self.window:] if if_f0 and t is not None else pitchf
754
+ audio_opt.append(self.vc(model, net_g, sid, audio_slice, pitch_slice, pitchf_slice, times, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
755
+
756
+ audio_opt = np.concatenate(audio_opt)
757
+ if rms_mix_rate != 1:
758
+ audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
759
+ if tgt_sr != resample_sr >= 16000:
760
+ audio_opt = librosa.resample(
761
+ audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
762
+ )
763
+ audio_max = np.abs(audio_opt).max() / 0.99
764
+ max_int16 = 32768
765
+ if audio_max > 1:
766
+ max_int16 /= audio_max
767
+ audio_opt = (audio_opt * max_int16).astype(np.int16)
768
+ del pitch, pitchf, sid
769
+ if torch.cuda.is_available():
770
+ torch.cuda.empty_cache()
771
+
772
+ print("Returning completed audio...")
773
+ return audio_opt
lib/split_audio.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from pydub import AudioSegment
3
+ from pydub.silence import detect_silence, detect_nonsilent
4
+
5
+ SEPERATE_DIR = os.path.join(os.getcwd(), "seperate")
6
+ TEMP_DIR = os.path.join(SEPERATE_DIR, "temp")
7
+ cache = {}
8
+
9
+ os.makedirs(SEPERATE_DIR, exist_ok=True)
10
+ os.makedirs(TEMP_DIR, exist_ok=True)
11
+
12
+ def cache_result(func):
13
+ def wrapper(*args, **kwargs):
14
+ key = (args, frozenset(kwargs.items()))
15
+ if key in cache:
16
+ return cache[key]
17
+ else:
18
+ result = func(*args, **kwargs)
19
+ cache[key] = result
20
+ return result
21
+ return wrapper
22
+
23
+ def get_non_silent(audio_name, audio, min_silence, silence_thresh, seek_step, keep_silence):
24
+ """
25
+ Function to get non-silent parts of the audio.
26
+ """
27
+ nonsilent_ranges = detect_nonsilent(audio, min_silence_len=min_silence, silence_thresh=silence_thresh, seek_step=seek_step)
28
+ nonsilent_files = []
29
+ for index, range in enumerate(nonsilent_ranges):
30
+ nonsilent_name = os.path.join(SEPERATE_DIR, f"{audio_name}_min{min_silence}_t{silence_thresh}_ss{seek_step}_ks{keep_silence}", f"nonsilent{index}-{audio_name}.wav")
31
+ start, end = range[0] - keep_silence, range[1] + keep_silence
32
+ audio[start:end].export(nonsilent_name, format="wav")
33
+ nonsilent_files.append(nonsilent_name)
34
+ return nonsilent_files
35
+
36
+ def get_silence(audio_name, audio, min_silence, silence_thresh, seek_step, keep_silence):
37
+ """
38
+ Function to get silent parts of the audio.
39
+ """
40
+ silence_ranges = detect_silence(audio, min_silence_len=min_silence, silence_thresh=silence_thresh, seek_step=seek_step)
41
+ silence_files = []
42
+ for index, range in enumerate(silence_ranges):
43
+ silence_name = os.path.join(SEPERATE_DIR, f"{audio_name}_min{min_silence}_t{silence_thresh}_ss{seek_step}_ks{keep_silence}", f"silence{index}-{audio_name}.wav")
44
+ start, end = range[0] + keep_silence, range[1] - keep_silence
45
+ audio[start:end].export(silence_name, format="wav")
46
+ silence_files.append(silence_name)
47
+ return silence_files
48
+
49
+ @cache_result
50
+ def split_silence_nonsilent(input_path, min_silence=500, silence_thresh=-40, seek_step=1, keep_silence=100):
51
+ """
52
+ Function to split the audio into silent and non-silent parts.
53
+ """
54
+ audio_name = os.path.splitext(os.path.basename(input_path))[0]
55
+ os.makedirs(os.path.join(SEPERATE_DIR, f"{audio_name}_min{min_silence}_t{silence_thresh}_ss{seek_step}_ks{keep_silence}"), exist_ok=True)
56
+ audio = AudioSegment.silent(duration=1000) + AudioSegment.from_file(input_path) + AudioSegment.silent(duration=1000)
57
+ silence_files = get_silence(audio_name, audio, min_silence, silence_thresh, seek_step, keep_silence)
58
+ nonsilent_files = get_non_silent(audio_name, audio, min_silence, silence_thresh, seek_step, keep_silence)
59
+ return silence_files, nonsilent_files
60
+
61
+ def adjust_audio_lengths(original_audios, inferred_audios):
62
+ """
63
+ Function to adjust the lengths of the inferred audio files list to match the original audio files length.
64
+ """
65
+ adjusted_audios = []
66
+ for original_audio, inferred_audio in zip(original_audios, inferred_audios):
67
+ audio_1 = AudioSegment.from_file(original_audio)
68
+ audio_2 = AudioSegment.from_file(inferred_audio)
69
+
70
+ if len(audio_1) > len(audio_2):
71
+ audio_2 += AudioSegment.silent(duration=len(audio_1) - len(audio_2))
72
+ else:
73
+ audio_2 = audio_2[:len(audio_1)]
74
+
75
+ adjusted_file = os.path.join(TEMP_DIR, f"adjusted-{os.path.basename(inferred_audio)}")
76
+ audio_2.export(adjusted_file, format="wav")
77
+ adjusted_audios.append(adjusted_file)
78
+
79
+ return adjusted_audios
80
+
81
+ def combine_silence_nonsilent(silence_files, nonsilent_files, keep_silence, output):
82
+ """
83
+ Function to combine the silent and non-silent parts of the audio.
84
+ """
85
+ combined = AudioSegment.empty()
86
+ for silence, nonsilent in zip(silence_files, nonsilent_files):
87
+ combined += AudioSegment.from_wav(silence) + AudioSegment.from_wav(nonsilent)
88
+ combined += AudioSegment.from_wav(silence_files[-1])
89
+ combined = AudioSegment.silent(duration=keep_silence) + combined[1000:-1000] + AudioSegment.silent(duration=keep_silence)
90
+ combined.export(output, format="wav")
91
+ return output