Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
from sentence_transformers import SentenceTransformer | |
from sklearn.metrics.pairwise import cosine_similarity | |
title = "๐๊ณ ๋ฏผ ํด๊ฒฐ ๋์ ์ถ์ฒ ์ฑ๋ด๐" | |
description = "๊ณ ๋ฏผ์ด ๋ฌด์์ธ๊ฐ์? ๊ณ ๋ฏผ ํด๊ฒฐ์ ๋์์ค ์ฑ ์ ์ถ์ฒํด๋๋ฆฝ๋๋ค" | |
examples = [["์์ฆ ์ ์ด ์ ์จ๋ค"]] | |
model = SentenceTransformer('jhgan/ko-sroberta-multitask') | |
df = pd.read_pickle('BookData_emb.pkl') | |
df_emb = df[['์ํ์๋ฒ ๋ฉ']].copy() | |
def recommend(message): | |
embedding = model.encode(message) | |
df_emb['๊ฑฐ๋ฆฌ'] = df_emb['์ํ์๋ฒ ๋ฉ'].map(lambda x: cosine_similarity([embedding], [x]).squeeze()) | |
answer = df.loc[df_emb['๊ฑฐ๋ฆฌ'].idxmax()] | |
Book_title = answer['์ ๋ชฉ'] | |
Book_author = answer['์๊ฐ'] | |
Book_publisher = answer['์ถํ์ฌ'] | |
Book_comment = answer['์ํ'] | |
return Book_title | |
gr.ChatInterface( | |
fn=recommend, | |
textbox=gr.Textbox(placeholder="๋ง๊ฑธ์ด์ฃผ์ธ์..", container=False, scale=7), | |
title="์ด๋ค ์ฑ๋ด์ ์ํ์ฌ๋ฏธ๊น?", | |
description="๋ฌผ์ด๋ณด๋ฉด ๋ตํ๋ ์ฑ๋ด์๋ฏธ๋ค.", | |
theme="soft", | |
examples=[["์๋ฝ"], ["์์ฆ ๋ฅ๋ค ใ ใ "], ["์ ์ฌ๋ฉ๋ด ์ถ์ฒ๋ฐ๋, ์ง์ฅ ์งฌ๋ฝ ํ 1"]], | |
retry_btn="๋ค์๋ณด๋ด๊ธฐ โฉ", | |
undo_btn="์ด์ ์ฑ ์ญ์ โ", | |
clear_btn="์ ์ฑ ์ญ์ ๐ซ").launch() |