Fake-Detect / app.py
ubuntu
fix bug
90620f9
import os
import time
import shutil
import gradio as gr
from detect import detect
import pygmtools as pygm
# Define file address constant
FD_IMG_DEFAULT_PATH = "media/fake_detect_default.png"
FD_SOLUTION_PATH = "media/fake_detect_pie.png"
PRETRAINED_PATH = "fc_weights.pth"
def _handle_fd_solve(img_path: str):
# Check file upload status
if img_path is None:
raise gr.Error("Please upload file completely!")
# Begin solve and record the solving time
start_time = time.time()
detect(
img_path=img_path,
save_path=FD_SOLUTION_PATH,
pretrained_path=PRETRAINED_PATH
)
solved_time = time.time() - start_time
# Message
message = "Successfully detect the image, using time ({:.3f}s).".format(solved_time)
return message, FD_SOLUTION_PATH
def handle_fd_solve(img_path: str):
try:
message = _handle_fd_solve(img_path)
return message
except Exception as e:
message = str(e)
return message, FD_SOLUTION_PATH
def handle_ged_clear():
# Replace the original image with the default image
shutil.copy(
src=FD_IMG_DEFAULT_PATH,
dst=FD_SOLUTION_PATH
)
message = "successfully clear the files!"
return message, FD_SOLUTION_PATH
with gr.Blocks() as ged_page:
gr.Markdown(
'''
This space displays that how to detect the images generated by AI.
## How to use this Space?
- Upload a '.png' or '.jpg' image.
- The detection result will be shown after you click the detect button.
- Click the 'clear' button to clear all the files.
## Examples
- You can get the test examples from our [FakeDetect Dataset Repo.](https://huggingface.co/datasets/SJTU-TES/Fake-Detect)
'''
)
with gr.Row(variant="panel"):
with gr.Column(scale=1):
with gr.Row():
fd_img = gr.Image(
type="filepath"
)
info = gr.Textbox(
value="",
label="Log",
scale=4,
)
with gr.Row():
with gr.Column(scale=1, min_width=100):
solve_button = gr.Button(
value="Detect",
variant="primary",
scale=1
)
with gr.Column(scale=1, min_width=100):
clear_button = gr.Button(
"Clear",
variant="secondary",
scale=1
)
with gr.Column(scale=8):
pass
with gr.Row(variant="panel"):
fd_solution = gr.Image(
value=FD_SOLUTION_PATH,
type="filepath",
label="Detection Result"
)
solve_button.click(
handle_fd_solve,
[fd_img],
outputs=[info, fd_solution]
)
clear_button.click(
handle_ged_clear,
inputs=None,
outputs=[info, fd_solution]
)
if __name__ == "__main__":
ged_page.launch(debug = True)