import os import time import shutil import gradio as gr from detect import detect import pygmtools as pygm # Define file address constant FD_IMG_DEFAULT_PATH = "media/fake_detect_default.png" FD_SOLUTION_PATH = "media/fake_detect_pie.png" PRETRAINED_PATH = "fc_weights.pth" def _handle_fd_solve(img_path: str): # Check file upload status if img_path is None: raise gr.Error("Please upload file completely!") # gzip os.system("gzip clip/bpe_simple_vocab_16e6.txt") # Begin solve and record the solving time start_time = time.time() detect( img_path=img_path, save_path=FD_SOLUTION_PATH, pretrained_path=PRETRAINED_PATH ) solved_time = time.time() - start_time # Message message = "Successfully detect the image, using time ({:.3f}s).".format(solved_time) return message, FD_SOLUTION_PATH def handle_fd_solve(img_path: str): try: message = _handle_fd_solve(img_path) return message except Exception as e: message = str(e) return message, FD_SOLUTION_PATH def handle_ged_clear(): # Replace the original image with the default image shutil.copy( src=FD_IMG_DEFAULT_PATH, dst=FD_SOLUTION_PATH ) message = "successfully clear the files!" return message, FD_SOLUTION_PATH with gr.Blocks() as ged_page: gr.Markdown( ''' This space displays that how to detect the images generated by AI. ## How to use this Space? - Upload a '.png' or '.jpg' image. - The detection result will be shown after you click the detect button. - Click the 'clear' button to clear all the files. ## Examples - You can get the test examples from our [FakeDetect Dataset Repo.](https://huggingface.co/datasets/SJTU-TES/FakeDetect) ''' ) with gr.Row(variant="panel"): with gr.Column(scale=1): with gr.Row(): fd_img = gr.Image( type="filepath" ) info = gr.Textbox( value="", label="Log", scale=4, ) with gr.Row(): with gr.Column(scale=1, min_width=100): solve_button = gr.Button( value="Detect", variant="primary", scale=1 ) with gr.Column(scale=1, min_width=100): clear_button = gr.Button( "Clear", variant="secondary", scale=1 ) with gr.Column(scale=8): pass with gr.Row(variant="panel"): fd_solution = gr.Image( value=FD_SOLUTION_PATH, type="filepath", label="Detection Result" ) solve_button.click( handle_fd_solve, [fd_img], outputs=[info, fd_solution] ) clear_button.click( handle_ged_clear, inputs=None, outputs=[info, fd_solution] ) if __name__ == "__main__": ged_page.launch(debug = True)