File size: 7,658 Bytes
32603e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os
import torch # pytorch backend
import torchvision # CV models
import pygmtools as pygm
import matplotlib.pyplot as plt # for plotting
from matplotlib.patches import ConnectionPatch # for plotting matching result
import scipy.io as sio # for loading .mat file
import scipy.spatial as spa # for Delaunay triangulation
from sklearn.decomposition import PCA as PCAdimReduc
import itertools
import numpy as np
from PIL import Image
pygm.set_backend('pytorch') # set default backend for pygmtools


##################################################################
#                           Utils Func                           #
##################################################################

def plot_image_with_graph(img, kpt, A=None):
    plt.imshow(img)
    plt.scatter(kpt[0], kpt[1], c='w', edgecolors='k')
    if A is not None:
        for idx in torch.nonzero(A, as_tuple=False):
            plt.plot((kpt[0, idx[0]], kpt[0, idx[1]]), (kpt[1, idx[0]], kpt[1, idx[1]]), 'k-')

      
def delaunay_triangulation(kpt):
    d = spa.Delaunay(kpt.numpy().transpose())
    A = torch.zeros(len(kpt[0]), len(kpt[0]))
    for simplex in d.simplices:
        for pair in itertools.permutations(simplex, 2):
            A[pair] = 1
    return A


def plot_image_with_graphs(img1, img2, kpts1, kpts2, A1=None, A2=None, 

        title_1: str="Image 1", title_2: str="Image 2", filename="examples.png"):
    plt.figure(figsize=(8, 4))
    plt.subplot(1, 2, 1)
    plt.title(title_1)
    plot_image_with_graph(img1, kpts1, A1)
    plt.subplot(1, 2, 2)
    plt.title(title_2)
    plot_image_with_graph(img2, kpts2, A2)
    plt.savefig(filename)


def load_images(

    img1_path: str, 

    img2_path: str,

    kpts1_path: str,

    kpts2_path: str,

    obj_resize: tuple=(256, 256)

):
    img1 = Image.open(img1_path)
    img2 = Image.open(img2_path)
    kpts1 = torch.tensor(sio.loadmat(kpts1_path)['pts_coord'])
    kpts2 = torch.tensor(sio.loadmat(kpts2_path)['pts_coord'])
    kpts1[0] = kpts1[0] * obj_resize[0] / img1.size[0]
    kpts1[1] = kpts1[1] * obj_resize[1] / img1.size[1]
    kpts2[0] = kpts2[0] * obj_resize[0] / img2.size[0]
    kpts2[1] = kpts2[1] * obj_resize[1] / img2.size[1]
    img1 = img1.resize(obj_resize, resample=Image.Resampling.BILINEAR)
    img2 = img2.resize(obj_resize, resample=Image.Resampling.BILINEAR)
    return img1, img2, kpts1, kpts2


##################################################################
#                            Process                             #
##################################################################

def pygm_rrwm(

    img1_path: str, 

    img2_path: str,

    kpts1_path: str,

    kpts2_path: str,

    obj_resize: tuple=(256, 256), 

    output_path: str="examples",

    filename: str="example"

):
    if not os.path.exists(output_path):
        os.mkdir(output_path)
    output_filename = os.path.join(output_path, filename) + "_{}.png"
    
    # Load the images
    img1, img2, kpts1, kpts2 = load_images(img1_path, img2_path, kpts1_path, kpts2_path, obj_resize)
    plot_image_with_graphs(img1, img2, kpts1, kpts2, filename=output_filename.format(1))
    
    # Build the graphs
    A1 = delaunay_triangulation(kpts1)
    A2 = delaunay_triangulation(kpts2)
    A1 = ((kpts1.unsqueeze(1) - kpts1.unsqueeze(2)) ** 2).sum(dim=0) * A1
    A1 = (A1 / A1.max()).to(dtype=torch.float32)
    A2 = ((kpts2.unsqueeze(1) - kpts2.unsqueeze(2)) ** 2).sum(dim=0) * A2
    A2 = (A2 / A2.max()).to(dtype=torch.float32)
    # plot_image_with_graphs(img1, img2, kpts1, kpts2, A1, A2, 
    #     "Image 1 with Graphs", "Image 2 with Graphs", output_filename.format(2))

    # Extract node features
    vgg16_cnn = torchvision.models.vgg16_bn(True)
    torch_img1 = torch.from_numpy(np.array(img1, dtype=np.float32) / 256).permute(2, 0, 1).unsqueeze(0) # shape: BxCxHxW
    torch_img2 = torch.from_numpy(np.array(img2, dtype=np.float32) / 256).permute(2, 0, 1).unsqueeze(0) # shape: BxCxHxW
    with torch.set_grad_enabled(False):
        feat1 = vgg16_cnn.features(torch_img1)
        feat2 = vgg16_cnn.features(torch_img2)

    # Normalize the features
    num_features = feat1.shape[1]
    def l2norm(node_feat):
        return torch.nn.functional.local_response_norm(
            node_feat, node_feat.shape[1] * 2, alpha=node_feat.shape[1] * 2, beta=0.5, k=0)
    feat1 = l2norm(feat1)
    feat2 = l2norm(feat2)

    # Up-sample the features to the original image size
    feat1_upsample = torch.nn.functional.interpolate(feat1, (obj_resize[1], obj_resize[0]), mode='bilinear')
    feat2_upsample = torch.nn.functional.interpolate(feat2, (obj_resize[1], obj_resize[0]), mode='bilinear')

    # Visualize the extracted CNN feature (dimensionality reduction via principle component analysis)
    pca_dim_reduc = PCAdimReduc(n_components=3, whiten=True)
    feat_dim_reduc = pca_dim_reduc.fit_transform(
        np.concatenate((
            feat1_upsample.permute(0, 2, 3, 1).reshape(-1, num_features).numpy(),
            feat2_upsample.permute(0, 2, 3, 1).reshape(-1, num_features).numpy()
        ), axis=0)
    )
    feat_dim_reduc = feat_dim_reduc / np.max(np.abs(feat_dim_reduc), axis=0, keepdims=True) / 2 + 0.5
    feat1_dim_reduc = feat_dim_reduc[:obj_resize[0] * obj_resize[1], :]
    feat2_dim_reduc = feat_dim_reduc[obj_resize[0] * obj_resize[1]:, :]
    
    # Plot
    # plt.figure(figsize=(8, 4))
    # plt.subplot(1, 2, 1)
    # plt.title('Image 1 with CNN features')
    # plot_image_with_graph(img1, kpts1, A1)
    # plt.imshow(feat1_dim_reduc.reshape(obj_resize[1], obj_resize[0], 3), alpha=0.5)
    # plt.subplot(1, 2, 2)
    # plt.title('Image 2 with CNN features')
    # plot_image_with_graph(img2, kpts2, A2)
    # plt.imshow(feat2_dim_reduc.reshape(obj_resize[1], obj_resize[0], 3), alpha=0.5)
    # plt.savefig(output_filename.format(3))
    
    # Extract node features by nearest interpolation
    rounded_kpts1 = torch.round(kpts1).to(dtype=torch.long)
    rounded_kpts2 = torch.round(kpts2).to(dtype=torch.long)
    node1 = feat1_upsample[0, :, rounded_kpts1[1], rounded_kpts1[0]].t() # shape: NxC
    node2 = feat2_upsample[0, :, rounded_kpts2[1], rounded_kpts2[0]].t() # shape: NxC
    
    # Build affinity matrix
    conn1, edge1 = pygm.utils.dense_to_sparse(A1)
    conn2, edge2 = pygm.utils.dense_to_sparse(A2)
    import functools
    gaussian_aff = functools.partial(pygm.utils.gaussian_aff_fn, sigma=1) # set affinity function
    K = pygm.utils.build_aff_mat(node1, edge1, conn1, node2, edge2, conn2, edge_aff_fn=gaussian_aff)
    
    # Plot affinity matrix
    # plt.figure(figsize=(4, 4))
    # plt.title(f'Affinity Matrix (size: {K.shape[0]}$\\times${K.shape[1]})')
    # plt.imshow(K.numpy(), cmap='Blues')
    # plt.savefig(output_filename.format(4))
    
    # Solve graph matching problem by RRWM solver
    X = pygm.rrwm(K, kpts1.shape[1], kpts2.shape[1])
    X = pygm.hungarian(X)
    
    # Plot the matching
    plt.figure(figsize=(8, 4))
    plt.suptitle('Image Matching Result by RRWM')
    ax1 = plt.subplot(1, 2, 1)
    plot_image_with_graph(img1, kpts1, A1)
    ax2 = plt.subplot(1, 2, 2)
    plot_image_with_graph(img2, kpts2, A2)
    for i in range(X.shape[0]):
        j = torch.argmax(X[i]).item()
        con = ConnectionPatch(xyA=kpts1[:, i], xyB=kpts2[:, j], coordsA="data", coordsB="data",
                            axesA=ax1, axesB=ax2, color="red" if i != j else "green")
        plt.gca().add_artist(con)
    plt.savefig(output_filename.format(2))