File size: 11,374 Bytes
7ca9b42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
from PIL import Image
import os
import json
import logging
import shutil
import csv
# from lib.network.munit import Vgg16
from torch.autograd import Variable
from torch.optim import lr_scheduler
from easydict import EasyDict as edict
import torch
import torch.nn as nn
import os
import math
import torchvision.utils as vutils
import yaml
import numpy as np
import torch.nn.init as init
import time
def get_config(config_path):
with open(config_path, 'r') as stream:
config = yaml.load(stream, Loader=yaml.SafeLoader)
config = edict(config)
_, config_filename = os.path.split(config_path)
config_name, _ = os.path.splitext(config_filename)
config.name = config_name
return config
class TextLogger:
def __init__(self, log_path):
self.log_path = log_path
with open(self.log_path, "w") as f:
f.write("")
def log(self, log):
with open(self.log_path, "a+") as f:
f.write(log + "\n")
def eformat(f, prec):
s = "%.*e"%(prec, f)
mantissa, exp = s.split('e')
# add 1 to digits as 1 is taken by sign +/-
return "%se%d"%(mantissa, int(exp))
def __write_images(image_outputs, display_image_num, file_name):
image_outputs = [images.expand(-1, 3, -1, -1) for images in image_outputs] # expand gray-scale images to 3 channels
image_tensor = torch.cat([images[:display_image_num] for images in image_outputs], 0)
image_grid = vutils.make_grid(image_tensor.data, nrow=display_image_num, padding=0, normalize=True)
vutils.save_image(image_grid, file_name, nrow=1)
def write_2images(image_outputs, display_image_num, image_directory, postfix):
n = len(image_outputs)
__write_images(image_outputs[0:n//2], display_image_num, '%s/gen_a2b_%s.jpg' % (image_directory, postfix))
__write_images(image_outputs[n//2:n], display_image_num, '%s/gen_b2a_%s.jpg' % (image_directory, postfix))
def write_one_row_html(html_file, iterations, img_filename, all_size):
html_file.write("<h3>iteration [%d] (%s)</h3>" % (iterations,img_filename.split('/')[-1]))
html_file.write("""
<p><a href="%s">
<img src="%s" style="width:%dpx">
</a><br>
<p>
""" % (img_filename, img_filename, all_size))
return
def write_html(filename, iterations, image_save_iterations, image_directory, all_size=1536):
html_file = open(filename, "w")
html_file.write('''
<!DOCTYPE html>
<html>
<head>
<title>Experiment name = %s</title>
<meta http-equiv="refresh" content="30">
</head>
<body>
''' % os.path.basename(filename))
html_file.write("<h3>current</h3>")
write_one_row_html(html_file, iterations, '%s/gen_a2b_train_current.jpg' % (image_directory), all_size)
write_one_row_html(html_file, iterations, '%s/gen_b2a_train_current.jpg' % (image_directory), all_size)
for j in range(iterations, image_save_iterations-1, -1):
if j % image_save_iterations == 0:
write_one_row_html(html_file, j, '%s/gen_a2b_test_%08d.jpg' % (image_directory, j), all_size)
write_one_row_html(html_file, j, '%s/gen_b2a_test_%08d.jpg' % (image_directory, j), all_size)
write_one_row_html(html_file, j, '%s/gen_a2b_train_%08d.jpg' % (image_directory, j), all_size)
write_one_row_html(html_file, j, '%s/gen_b2a_train_%08d.jpg' % (image_directory, j), all_size)
html_file.write("</body></html>")
html_file.close()
def write_loss(iterations, trainer, train_writer):
members = [attr for attr in dir(trainer) \
if not callable(getattr(trainer, attr)) and not attr.startswith("__") and ('loss' in attr or 'grad' in attr or 'nwd' in attr)]
for m in members:
train_writer.add_scalar(m, getattr(trainer, m), iterations + 1)
def slerp(val, low, high):
"""
original: Animating Rotation with Quaternion Curves, Ken Shoemake
https://arxiv.org/abs/1609.04468
Code: https://github.com/soumith/dcgan.torch/issues/14, Tom White
"""
omega = np.arccos(np.dot(low / np.linalg.norm(low), high / np.linalg.norm(high)))
so = np.sin(omega)
return np.sin((1.0 - val) * omega) / so * low + np.sin(val * omega) / so * high
def get_slerp_interp(nb_latents, nb_interp, z_dim):
"""
modified from: PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot
https://github.com/ptrblck/prog_gans_pytorch_inference
"""
latent_interps = np.empty(shape=(0, z_dim), dtype=np.float32)
for _ in range(nb_latents):
low = np.random.randn(z_dim)
high = np.random.randn(z_dim) # low + np.random.randn(512) * 0.7
interp_vals = np.linspace(0, 1, num=nb_interp)
latent_interp = np.array([slerp(v, low, high) for v in interp_vals],
dtype=np.float32)
latent_interps = np.vstack((latent_interps, latent_interp))
return latent_interps[:, :, np.newaxis, np.newaxis]
# Get model list for resume
def get_model_list(dirname, key):
if os.path.exists(dirname) is False:
return None
gen_models = [os.path.join(dirname, f) for f in os.listdir(dirname) if
os.path.isfile(os.path.join(dirname, f)) and key in f and ".pt" in f]
if gen_models is None:
return None
gen_models.sort()
last_model_name = gen_models[-1]
return last_model_name
def get_scheduler(optimizer, hyperparameters, iterations=-1):
if 'lr_policy' not in hyperparameters or hyperparameters['lr_policy'] == 'constant':
scheduler = None # constant scheduler
elif hyperparameters['lr_policy'] == 'step':
scheduler = lr_scheduler.StepLR(optimizer, step_size=hyperparameters['step_size'],
gamma=hyperparameters['gamma'], last_epoch=iterations)
else:
return NotImplementedError('learning rate policy [%s] is not implemented', hyperparameters['lr_policy'])
return scheduler
def weights_init(init_type='gaussian'):
def init_fun(m):
classname = m.__class__.__name__
if (classname.find('Conv') == 0 or classname.find('Linear') == 0) and hasattr(m, 'weight'):
# print m.__class__.__name__
if init_type == 'gaussian':
init.normal_(m.weight.data, 0.0, 0.02)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=math.sqrt(2))
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=math.sqrt(2))
elif init_type == 'default':
pass
else:
assert 0, "Unsupported initialization: {}".format(init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
return init_fun
class Timer:
def __init__(self, msg):
self.msg = msg
self.start_time = None
def __enter__(self):
self.start_time = time.time()
def __exit__(self, exc_type, exc_value, exc_tb):
print(self.msg % (time.time() - self.start_time))
class TrainClock(object):
def __init__(self):
self.epoch = 1
self.minibatch = 0
self.step = 0
def tick(self):
self.minibatch += 1
self.step += 1
def tock(self):
self.epoch += 1
self.minibatch = 0
def make_checkpoint(self):
return {
'epoch': self.epoch,
'minibatch': self.minibatch,
'step': self.step
}
def restore_checkpoint(self, clock_dict):
self.epoch = clock_dict['epoch']
self.minibatch = clock_dict['minibatch']
self.step = clock_dict['step']
class Table(object):
def __init__(self, filename):
'''
create a table to record experiment results that can be opened by excel
:param filename: using '.csv' as postfix
'''
assert '.csv' in filename
self.filename = filename
@staticmethod
def merge_headers(header1, header2):
#return list(set(header1 + header2))
if len(header1) > len(header2):
return header1
else:
return header2
def write(self, ordered_dict):
'''
write an entry
:param ordered_dict: something like {'name':'exp1', 'acc':90.5, 'epoch':50}
:return:
'''
if os.path.exists(self.filename) == False:
headers = list(ordered_dict.keys())
prev_rec = None
else:
with open(self.filename) as f:
reader = csv.DictReader(f)
headers = reader.fieldnames
prev_rec = [row for row in reader]
headers = self.merge_headers(headers, list(ordered_dict.keys()))
with open(self.filename, 'w', newline='') as f:
writer = csv.DictWriter(f, headers)
writer.writeheader()
if not prev_rec == None:
writer.writerows(prev_rec)
writer.writerow(ordered_dict)
class WorklogLogger:
def __init__(self, log_file):
logging.basicConfig(filename=log_file,
level=logging.DEBUG,
format='%(asctime)s - %(threadName)s - %(levelname)s - %(message)s')
self.logger = logging.getLogger()
def put_line(self, line):
self.logger.info(line)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name):
self.name = name
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def save_args(args, save_dir):
param_path = os.path.join(save_dir, 'params.json')
with open(param_path, 'w') as fp:
json.dump(args.__dict__, fp, indent=4, sort_keys=True)
def ensure_dir(path):
"""
create path by first checking its existence,
:param paths: path
:return:
"""
if not os.path.exists(path):
os.makedirs(path)
def ensure_dirs(paths):
"""
create paths by first checking their existence
:param paths: list of path
:return:
"""
if isinstance(paths, list) and not isinstance(paths, str):
for path in paths:
ensure_dir(path)
else:
ensure_dir(paths)
def remkdir(path):
"""
if dir exists, remove it and create a new one
:param path:
:return:
"""
if os.path.exists(path):
shutil.rmtree(path)
os.makedirs(path)
def cycle(iterable):
while True:
for x in iterable:
yield x
def save_image(image_numpy, image_path):
image_pil = Image.fromarray(image_numpy)
image_pil.save(image_path)
def pad_to_16x(x):
if x % 16 > 0:
return x - x % 16 + 16
return x
def pad_to_height(tar_height, img_height, img_width):
scale = tar_height / img_height
h = pad_to_16x(tar_height)
w = pad_to_16x(int(img_width * scale))
return h, w, scale
def to_gpu(data):
for key, item in data.items():
if torch.is_tensor(item):
data[key] = item.cuda()
return data
|