File size: 17,704 Bytes
7ca9b42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
import numpy as np
import os
import cv2
import math
import imageio
from tqdm import tqdm
from PIL import Image
from lib.util.motion import normalize_motion_inv, globalize_motion
from lib.util.general import ensure_dir
from threading import Thread, Lock
def interpolate_color(color1, color2, alpha):
color_i = alpha * np.array(color1) + (1 - alpha) * np.array(color2)
return color_i.tolist()
def two_pts_to_rectangle(point1, point2):
X = [point1[1], point2[1]]
Y = [point1[0], point2[0]]
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
length = 5
alpha = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
beta = alpha - 90
if beta <= -180:
beta += 360
p1 = ( int(point1[0] - length*math.cos(math.radians(beta))) , int(point1[1] - length*math.sin(math.radians(beta))) )
p2 = ( int(point1[0] + length*math.cos(math.radians(beta))) , int(point1[1] + length*math.sin(math.radians(beta))) )
p3 = ( int(point2[0] + length*math.cos(math.radians(beta))) , int(point2[1] + length*math.sin(math.radians(beta))) )
p4 = ( int(point2[0] - length*math.cos(math.radians(beta))) , int(point2[1] - length*math.sin(math.radians(beta))) )
return [p1,p2,p3,p4]
def rgb2rgba(color):
return (color[0], color[1], color[2], 255)
def hex2rgb(hex, number_of_colors=3):
h = hex
rgb = []
for i in range(number_of_colors):
h = h.lstrip('#')
hex_color = h[0:6]
rgb_color = [int(hex_color[i:i+2], 16) for i in (0, 2 ,4)]
rgb.append(rgb_color)
h = h[6:]
return rgb
def normalize_joints(joints_position, H=512, W=512):
# 找出关节坐标的最大值和最小值
min_x, min_y = np.min(joints_position, axis=0)
max_x, max_y = np.max(joints_position, axis=0)
# 计算关节坐标的范围
range_x, range_y = max_x - min_x, max_y - min_y
# 设定一个缩放的边界保护值,防止关节坐标在缩放后超出画布
buffer = 0.05 # 例如 5% 的边界保护
scale_x, scale_y = (1 - buffer) * W / range_x, (1 - buffer) * H / range_y
# 使用较小的缩放比例来保证所有关节都能适合画布
scale = min(scale_x, scale_y)
# 缩放关节坐标
joints_position_scaled = (joints_position - np.array([min_x, min_y])) * scale
# 计算缩放后关节坐标的新边界
new_min_x, new_min_y = np.min(joints_position_scaled, axis=0)
new_max_x, new_max_y = np.max(joints_position_scaled, axis=0)
# 计算平移量,将关节移到画布中心
translate_x = (W - (new_max_x - new_min_x)) / 2 - new_min_x
translate_y = (H - (new_max_y - new_min_y)) / 2 - new_min_y
# 平移关节坐标
joints_position_normalized = joints_position_scaled + np.array([translate_x, translate_y])
return joints_position_normalized
def joints2image(joints_position, colors, transparency=False, H=512, W=512, nr_joints=15, imtype=np.uint8, grayscale=False, bg_color=(255, 255, 255)):
nr_joints = joints_position.shape[0]
joints_position=normalize_joints(joints_position)
if nr_joints == 49: # full joints(49): basic(15) + eyes(2) + toes(2) + hands(30)
limbSeq = [[0, 1], [1, 2], [1, 5], [1, 8], [2, 3], [3, 4], [5, 6], [6, 7], \
[8, 9], [8, 13], [9, 10], [10, 11], [11, 12], [13, 14], [14, 15], [15, 16],
]#[0, 17], [0, 18]] #ignore eyes
L = rgb2rgba(colors[0]) if transparency else colors[0]
M = rgb2rgba(colors[1]) if transparency else colors[1]
R = rgb2rgba(colors[2]) if transparency else colors[2]
colors_joints = [M, M, L, L, L, R, R,
R, M, L, L, L, L, R, R, R,
R, R, L] + [L] * 15 + [R] * 15
colors_limbs = [M, L, R, M, L, L, R,
R, L, R, L, L, L, R, R, R,
R, R]
elif nr_joints == 15 or nr_joints == 17: # basic joints(15) + (eyes(2))
limbSeq = [[0, 1], [1, 2], [1, 5], [1, 8], [2, 3], [3, 4], [5, 6], [6, 7],
[8, 9], [8, 12], [9, 10], [10, 11], [12, 13], [13, 14]]
# [0, 15], [0, 16] two eyes are not drawn
L = rgb2rgba(colors[0]) if transparency else colors[0]
M = rgb2rgba(colors[1]) if transparency else colors[1]
R = rgb2rgba(colors[2]) if transparency else colors[2]
colors_joints = [M, M, L, L, L, R, R,
R, M, L, L, L, R, R, R]
colors_limbs = [M, L, R, M, L, L, R,
R, L, R, L, L, R, R]
else:
raise ValueError("Only support number of joints be 49 or 17 or 15")
if transparency:
canvas = np.zeros(shape=(H, W, 4))
else:
canvas = np.ones(shape=(H, W, 3)) * np.array(bg_color).reshape([1, 1, 3])
hips = joints_position[8]
neck = joints_position[1]
torso_length = ((hips[1] - neck[1]) ** 2 + (hips[0] - neck[0]) ** 2) ** 0.5
head_radius = int(torso_length/4.5)
end_effectors_radius = int(torso_length/15)
end_effectors_radius = 7
joints_radius = 7
# joints_position[0][0]*=200
# joints_position[0][1]*=200
cv2.circle(canvas, (int(joints_position[0][0]),int(joints_position[0][1])), head_radius, colors_joints[0], thickness=-1)
for i in range(1, len(colors_joints)):
# print(joints_position[i][0])
# joints_position[i][0]*=200
# joints_position[i][1]*=200
# print(joints_position[i][1])
if i in (17, 18):
continue
elif i > 18:
radius = 2
else:
radius = joints_radius
cv2.circle(canvas, (int(joints_position[i][0]),int(joints_position[i][1])), radius, colors_joints[i], thickness=-1)
stickwidth = 2
for i in range(len(limbSeq)):
limb = limbSeq[i]
cur_canvas = canvas.copy()
point1_index = limb[0]
point2_index = limb[1]
#if len(all_peaks[point1_index]) > 0 and len(all_peaks[point2_index]) > 0:
point1 = joints_position[point1_index]
point2 = joints_position[point2_index]
X = [point1[1], point2[1]]
Y = [point1[0], point2[0]]
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
alpha = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(alpha), 0, 360, 1)
cv2.fillConvexPoly(cur_canvas, polygon, colors_limbs[i])
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
bb = bounding_box(canvas)
canvas_cropped = canvas[:,bb[2]:bb[3], :]
canvas = canvas.astype(imtype)
canvas_cropped = canvas_cropped.astype(imtype)
if grayscale:
if transparency:
canvas = cv2.cvtColor(canvas, cv2.COLOR_RGBA2GRAY)
canvas_cropped = cv2.cvtColor(canvas_cropped, cv2.COLOR_RGBA2GRAY)
else:
canvas = cv2.cvtColor(canvas, cv2.COLOR_RGB2GRAY)
canvas_cropped = cv2.cvtColor(canvas_cropped, cv2.COLOR_RGB2GRAY)
return [canvas, canvas_cropped]
def joints2image_highlight(joints_position, colors, highlights, transparency=False, H=512, W=512, nr_joints=15, imtype=np.uint8, grayscale=False):
nr_joints = joints_position.shape[0]
limbSeq = [[0, 1], [1, 2], [1, 5], [1, 8], [2, 3], [3, 4], [5, 6], [6, 7],
[8, 9], [8, 12], [9, 10], [10, 11], [12, 13], [13, 14]]
# [0, 15], [0, 16] two eyes are not drawn
L = rgb2rgba(colors[0]) if transparency else colors[0]
M = rgb2rgba(colors[1]) if transparency else colors[1]
R = rgb2rgba(colors[2]) if transparency else colors[2]
Hi = rgb2rgba(colors[3]) if transparency else colors[3]
colors_joints = [M, M, L, L, L, R, R,
R, M, L, L, L, R, R, R]
colors_limbs = [M, L, R, M, L, L, R,
R, L, R, L, L, R, R]
for hi in highlights: colors_limbs[hi] = Hi
if transparency:
canvas = np.zeros(shape=(H, W, 4))
else:
canvas = np.ones(shape=(H, W, 3)) * 255
hips = joints_position[8]
neck = joints_position[1]
torso_length = ((hips[1] - neck[1]) ** 2 + (hips[0] - neck[0]) ** 2) ** 0.5
head_radius = int(torso_length/4.5)
end_effectors_radius = int(torso_length/15)
end_effectors_radius = 7
joints_radius = 7
cv2.circle(canvas, (int(joints_position[0][0]*500),int(joints_position[0][1]*500)), head_radius, colors_joints[0], thickness=-1)
for i in range(1, len(colors_joints)):
if i in (17, 18):
continue
elif i > 18:
radius = 2
else:
radius = joints_radius
cv2.circle(canvas, (int(joints_position[i][0]*500),int(joints_position[i][1]*500)), radius, colors_joints[i], thickness=-1)
stickwidth = 2
for i in range(len(limbSeq)):
limb = limbSeq[i]
cur_canvas = canvas.copy()
point1_index = limb[0]
point2_index = limb[1]
#if len(all_peaks[point1_index]) > 0 and len(all_peaks[point2_index]) > 0:
point1 = joints_position[point1_index]
point2 = joints_position[point2_index]
X = [point1[1], point2[1]]
Y = [point1[0], point2[0]]
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
alpha = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(alpha), 0, 360, 1)
cv2.fillConvexPoly(cur_canvas, polygon, colors_limbs[i])
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
bb = bounding_box(canvas)
canvas_cropped = canvas[:,bb[2]:bb[3], :]
canvas = canvas.astype(imtype)
canvas_cropped = canvas_cropped.astype(imtype)
if grayscale:
if transparency:
canvas = cv2.cvtColor(canvas, cv2.COLOR_RGBA2GRAY)
canvas_cropped = cv2.cvtColor(canvas_cropped, cv2.COLOR_RGBA2GRAY)
else:
canvas = cv2.cvtColor(canvas, cv2.COLOR_RGB2GRAY)
canvas_cropped = cv2.cvtColor(canvas_cropped, cv2.COLOR_RGB2GRAY)
return [canvas, canvas_cropped]
def motion2video(motion, h, w, save_path, colors, bg_color=(255, 255, 255), transparency=False, motion_tgt=None, fps=25, save_frame=True, grayscale=False, show_progress=True):
nr_joints = motion.shape[0]
as_array = save_path.endswith(".npy")
vlen = motion.shape[-1]
out_array = np.zeros([h, w, vlen]) if as_array else None
videowriter = None if as_array else imageio.get_writer(save_path, fps=fps, codec='libx264')
if save_frame:
frames_dir = save_path[:-4] + '-frames'
ensure_dir(frames_dir)
iterator = range(vlen)
if show_progress: iterator = tqdm(iterator)
for i in iterator:
[img, img_cropped] = joints2image(motion[:, :, i], colors, transparency=transparency, bg_color=bg_color, H=h, W=w, nr_joints=nr_joints, grayscale=grayscale)
if motion_tgt is not None:
[img_tgt, img_tgt_cropped] = joints2image(motion_tgt[:, :, i], colors, transparency=transparency, bg_color=bg_color, H=h, W=w, nr_joints=nr_joints, grayscale=grayscale)
img_ori = img.copy()
img = cv2.addWeighted(img_tgt, 0.3, img_ori, 0.7, 0)
img_cropped = cv2.addWeighted(img_tgt, 0.3, img_ori, 0.7, 0)
bb = bounding_box(img_cropped)
img_cropped = img_cropped[:, bb[2]:bb[3], :]
if save_frame:
save_image(img_cropped, os.path.join(frames_dir, "%04d.png" % i))
if as_array: out_array[:, :, i] = img
#else: videowriter.append_data(img)
if as_array: np.save(save_path, out_array)
else: videowriter.close()
return out_array
def motion2video_np(motion, h, w, colors, bg_color=(255, 255, 255), transparency=False, motion_tgt=None, show_progress=True, workers=6):
nr_joints = motion.shape[0]
vlen = motion.shape[-1]
out_array = np.zeros([vlen, h, w , 3])
queue = [i for i in range(vlen)]
lock = Lock()
pbar = tqdm(total=vlen) if show_progress else None
class Worker(Thread):
def __init__(self):
super(Worker, self).__init__()
def run(self):
while True:
lock.acquire()
if len(queue) == 0:
lock.release()
break
else:
i = queue.pop(0)
lock.release()
[img, img_cropped] = joints2image(motion[:, :, i], colors, transparency=transparency, bg_color=bg_color, H=h, W=w, nr_joints=nr_joints, grayscale=False)
if motion_tgt is not None:
[img_tgt, img_tgt_cropped] = joints2image(motion_tgt[:, :, i], colors, transparency=transparency, H=h, W=w, nr_joints=nr_joints, grayscale=False)
img_ori = img.copy()
img = cv2.addWeighted(img_tgt, 0.3, img_ori, 0.7, 0)
# img_cropped = cv2.addWeighted(img_tgt, 0.3, img_ori, 0.7, 0)
# bb = bounding_box(img_cropped)
# img_cropped = img_cropped[:, bb[2]:bb[3], :]
out_array[i, :, :] = img
if show_progress: pbar.update(1)
pool = [Worker() for _ in range(workers)]
for worker in pool: worker.start()
for worker in pool: worker.join()
for worker in pool: del worker
return out_array
def save_image(image_numpy, image_path):
image_pil = Image.fromarray(image_numpy)
image_pil.save(image_path)
def bounding_box(img):
a = np.where(img != 0)
bbox = np.min(a[0]), np.max(a[0]), np.min(a[1]), np.max(a[1])
return bbox
def pose2im_all(all_peaks, H=512, W=512):
limbSeq = [[1, 2], [2, 3], [3, 4], # right arm
[1, 5], [5, 6], [6, 7], # left arm
[8, 9], [9, 10], [10, 11], # right leg
[8, 12], [12, 13], [13, 14], # left leg
[1, 0], # head/neck
[1, 8], # body,
]
limb_colors = [[0, 60, 255], [0, 120, 255], [0, 180, 255],
[180, 255, 0], [120, 255, 0], [60, 255, 0],
[170, 255, 0], [85, 255, 0], [0, 255, 0],
[255, 170, 0], [255, 85, 0], [255, 0, 0],
[0, 85, 255],
[0, 0, 255],
]
joint_colors = [[85, 0, 255], [0, 0, 255], [0, 60, 255], [0, 120, 255], [0, 180, 255],
[180, 255, 0], [120, 255, 0], [60, 255, 0], [0, 0, 255],
[170, 255, 0], [85, 255, 0], [0, 255, 0],
[255, 170, 0], [255, 85, 0], [255, 0, 0],
]
image = pose2im(all_peaks, limbSeq, limb_colors, joint_colors, H, W)
return image
def pose2im(all_peaks, limbSeq, limb_colors, joint_colors, H, W, _circle=True, _limb=True, imtype=np.uint8):
canvas = np.zeros(shape=(H, W, 3))
canvas.fill(255)
if _circle:
for i in range(len(joint_colors)):
cv2.circle(canvas, (int(all_peaks[i][0]), int(all_peaks[i][1])), 2, joint_colors[i], thickness=2)
if _limb:
stickwidth = 2
for i in range(len(limbSeq)):
limb = limbSeq[i]
cur_canvas = canvas.copy()
point1_index = limb[0]
point2_index = limb[1]
if len(all_peaks[point1_index]) > 0 and len(all_peaks[point2_index]) > 0:
point1 = all_peaks[point1_index][0:2]
point2 = all_peaks[point2_index][0:2]
X = [point1[1], point2[1]]
Y = [point1[0], point2[0]]
mX = np.mean(X)
mY = np.mean(Y)
# cv2.line()
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
cv2.fillConvexPoly(cur_canvas, polygon, limb_colors[i])
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
return canvas.astype(imtype)
def visualize_motion_in_training(outputs, mean_pose, std_pose, nr_visual=4, H=512, W=512):
ret = {}
for k, out in outputs.items():
motion = out[0].detach().cpu().numpy()
inds = np.linspace(0, motion.shape[1] - 1, nr_visual, dtype=int)
motion = motion[:, inds]
motion = motion.reshape(-1, 2, motion.shape[-1])
motion = normalize_motion_inv(motion, mean_pose, std_pose)
peaks = globalize_motion(motion)
heatmaps = []
for i in range(peaks.shape[2]):
skeleton = pose2im_all(peaks[:, :, i], H, W)
heatmaps.append(skeleton)
heatmaps = np.stack(heatmaps).transpose((0, 3, 1, 2)) / 255.0
ret[k] = heatmaps
return ret
if __name__ == '__main__':
# 加载.npy文件
motion_data = np.load('/home/fazhong/studio/transmomo.pytorch/out/retarget_1_121.npy')
# 设置视频参数
height = 512 # 视频的高度
width = 512 # 视频的宽度
save_path = 'Angry.mp4' # 保存视频的路径
colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255)] # 关节颜色
bg_color = (255, 255, 255) # 背景颜色
fps = 25 # 视频的帧率
# 调用函数生成视频
motion2video(motion_data, height, width, save_path, colors, bg_color=bg_color, transparency=False, fps=fps) |