import numpy as np import os import cv2 import math import imageio from tqdm import tqdm from PIL import Image from lib.util.motion import normalize_motion_inv, globalize_motion from lib.util.general import ensure_dir from threading import Thread, Lock def interpolate_color(color1, color2, alpha): color_i = alpha * np.array(color1) + (1 - alpha) * np.array(color2) return color_i.tolist() def two_pts_to_rectangle(point1, point2): X = [point1[1], point2[1]] Y = [point1[0], point2[0]] length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5 length = 5 alpha = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) beta = alpha - 90 if beta <= -180: beta += 360 p1 = ( int(point1[0] - length*math.cos(math.radians(beta))) , int(point1[1] - length*math.sin(math.radians(beta))) ) p2 = ( int(point1[0] + length*math.cos(math.radians(beta))) , int(point1[1] + length*math.sin(math.radians(beta))) ) p3 = ( int(point2[0] + length*math.cos(math.radians(beta))) , int(point2[1] + length*math.sin(math.radians(beta))) ) p4 = ( int(point2[0] - length*math.cos(math.radians(beta))) , int(point2[1] - length*math.sin(math.radians(beta))) ) return [p1,p2,p3,p4] def rgb2rgba(color): return (color[0], color[1], color[2], 255) def hex2rgb(hex, number_of_colors=3): h = hex rgb = [] for i in range(number_of_colors): h = h.lstrip('#') hex_color = h[0:6] rgb_color = [int(hex_color[i:i+2], 16) for i in (0, 2 ,4)] rgb.append(rgb_color) h = h[6:] return rgb def normalize_joints(joints_position, H=512, W=512): # 找出关节坐标的最大值和最小值 min_x, min_y = np.min(joints_position, axis=0) max_x, max_y = np.max(joints_position, axis=0) # 计算关节坐标的范围 range_x, range_y = max_x - min_x, max_y - min_y # 设定一个缩放的边界保护值,防止关节坐标在缩放后超出画布 buffer = 0.05 # 例如 5% 的边界保护 scale_x, scale_y = (1 - buffer) * W / range_x, (1 - buffer) * H / range_y # 使用较小的缩放比例来保证所有关节都能适合画布 scale = min(scale_x, scale_y) # 缩放关节坐标 joints_position_scaled = (joints_position - np.array([min_x, min_y])) * scale # 计算缩放后关节坐标的新边界 new_min_x, new_min_y = np.min(joints_position_scaled, axis=0) new_max_x, new_max_y = np.max(joints_position_scaled, axis=0) # 计算平移量,将关节移到画布中心 translate_x = (W - (new_max_x - new_min_x)) / 2 - new_min_x translate_y = (H - (new_max_y - new_min_y)) / 2 - new_min_y # 平移关节坐标 joints_position_normalized = joints_position_scaled + np.array([translate_x, translate_y]) return joints_position_normalized def joints2image(joints_position, colors, transparency=False, H=512, W=512, nr_joints=15, imtype=np.uint8, grayscale=False, bg_color=(255, 255, 255)): nr_joints = joints_position.shape[0] joints_position=normalize_joints(joints_position) if nr_joints == 49: # full joints(49): basic(15) + eyes(2) + toes(2) + hands(30) limbSeq = [[0, 1], [1, 2], [1, 5], [1, 8], [2, 3], [3, 4], [5, 6], [6, 7], \ [8, 9], [8, 13], [9, 10], [10, 11], [11, 12], [13, 14], [14, 15], [15, 16], ]#[0, 17], [0, 18]] #ignore eyes L = rgb2rgba(colors[0]) if transparency else colors[0] M = rgb2rgba(colors[1]) if transparency else colors[1] R = rgb2rgba(colors[2]) if transparency else colors[2] colors_joints = [M, M, L, L, L, R, R, R, M, L, L, L, L, R, R, R, R, R, L] + [L] * 15 + [R] * 15 colors_limbs = [M, L, R, M, L, L, R, R, L, R, L, L, L, R, R, R, R, R] elif nr_joints == 15 or nr_joints == 17: # basic joints(15) + (eyes(2)) limbSeq = [[0, 1], [1, 2], [1, 5], [1, 8], [2, 3], [3, 4], [5, 6], [6, 7], [8, 9], [8, 12], [9, 10], [10, 11], [12, 13], [13, 14]] # [0, 15], [0, 16] two eyes are not drawn L = rgb2rgba(colors[0]) if transparency else colors[0] M = rgb2rgba(colors[1]) if transparency else colors[1] R = rgb2rgba(colors[2]) if transparency else colors[2] colors_joints = [M, M, L, L, L, R, R, R, M, L, L, L, R, R, R] colors_limbs = [M, L, R, M, L, L, R, R, L, R, L, L, R, R] else: raise ValueError("Only support number of joints be 49 or 17 or 15") if transparency: canvas = np.zeros(shape=(H, W, 4)) else: canvas = np.ones(shape=(H, W, 3)) * np.array(bg_color).reshape([1, 1, 3]) hips = joints_position[8] neck = joints_position[1] torso_length = ((hips[1] - neck[1]) ** 2 + (hips[0] - neck[0]) ** 2) ** 0.5 head_radius = int(torso_length/4.5) end_effectors_radius = int(torso_length/15) end_effectors_radius = 7 joints_radius = 7 # joints_position[0][0]*=200 # joints_position[0][1]*=200 cv2.circle(canvas, (int(joints_position[0][0]),int(joints_position[0][1])), head_radius, colors_joints[0], thickness=-1) for i in range(1, len(colors_joints)): # print(joints_position[i][0]) # joints_position[i][0]*=200 # joints_position[i][1]*=200 # print(joints_position[i][1]) if i in (17, 18): continue elif i > 18: radius = 2 else: radius = joints_radius cv2.circle(canvas, (int(joints_position[i][0]),int(joints_position[i][1])), radius, colors_joints[i], thickness=-1) stickwidth = 2 for i in range(len(limbSeq)): limb = limbSeq[i] cur_canvas = canvas.copy() point1_index = limb[0] point2_index = limb[1] #if len(all_peaks[point1_index]) > 0 and len(all_peaks[point2_index]) > 0: point1 = joints_position[point1_index] point2 = joints_position[point2_index] X = [point1[1], point2[1]] Y = [point1[0], point2[0]] mX = np.mean(X) mY = np.mean(Y) length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5 alpha = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(alpha), 0, 360, 1) cv2.fillConvexPoly(cur_canvas, polygon, colors_limbs[i]) canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0) bb = bounding_box(canvas) canvas_cropped = canvas[:,bb[2]:bb[3], :] canvas = canvas.astype(imtype) canvas_cropped = canvas_cropped.astype(imtype) if grayscale: if transparency: canvas = cv2.cvtColor(canvas, cv2.COLOR_RGBA2GRAY) canvas_cropped = cv2.cvtColor(canvas_cropped, cv2.COLOR_RGBA2GRAY) else: canvas = cv2.cvtColor(canvas, cv2.COLOR_RGB2GRAY) canvas_cropped = cv2.cvtColor(canvas_cropped, cv2.COLOR_RGB2GRAY) return [canvas, canvas_cropped] def joints2image_highlight(joints_position, colors, highlights, transparency=False, H=512, W=512, nr_joints=15, imtype=np.uint8, grayscale=False): nr_joints = joints_position.shape[0] limbSeq = [[0, 1], [1, 2], [1, 5], [1, 8], [2, 3], [3, 4], [5, 6], [6, 7], [8, 9], [8, 12], [9, 10], [10, 11], [12, 13], [13, 14]] # [0, 15], [0, 16] two eyes are not drawn L = rgb2rgba(colors[0]) if transparency else colors[0] M = rgb2rgba(colors[1]) if transparency else colors[1] R = rgb2rgba(colors[2]) if transparency else colors[2] Hi = rgb2rgba(colors[3]) if transparency else colors[3] colors_joints = [M, M, L, L, L, R, R, R, M, L, L, L, R, R, R] colors_limbs = [M, L, R, M, L, L, R, R, L, R, L, L, R, R] for hi in highlights: colors_limbs[hi] = Hi if transparency: canvas = np.zeros(shape=(H, W, 4)) else: canvas = np.ones(shape=(H, W, 3)) * 255 hips = joints_position[8] neck = joints_position[1] torso_length = ((hips[1] - neck[1]) ** 2 + (hips[0] - neck[0]) ** 2) ** 0.5 head_radius = int(torso_length/4.5) end_effectors_radius = int(torso_length/15) end_effectors_radius = 7 joints_radius = 7 cv2.circle(canvas, (int(joints_position[0][0]*500),int(joints_position[0][1]*500)), head_radius, colors_joints[0], thickness=-1) for i in range(1, len(colors_joints)): if i in (17, 18): continue elif i > 18: radius = 2 else: radius = joints_radius cv2.circle(canvas, (int(joints_position[i][0]*500),int(joints_position[i][1]*500)), radius, colors_joints[i], thickness=-1) stickwidth = 2 for i in range(len(limbSeq)): limb = limbSeq[i] cur_canvas = canvas.copy() point1_index = limb[0] point2_index = limb[1] #if len(all_peaks[point1_index]) > 0 and len(all_peaks[point2_index]) > 0: point1 = joints_position[point1_index] point2 = joints_position[point2_index] X = [point1[1], point2[1]] Y = [point1[0], point2[0]] mX = np.mean(X) mY = np.mean(Y) length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5 alpha = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(alpha), 0, 360, 1) cv2.fillConvexPoly(cur_canvas, polygon, colors_limbs[i]) canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0) bb = bounding_box(canvas) canvas_cropped = canvas[:,bb[2]:bb[3], :] canvas = canvas.astype(imtype) canvas_cropped = canvas_cropped.astype(imtype) if grayscale: if transparency: canvas = cv2.cvtColor(canvas, cv2.COLOR_RGBA2GRAY) canvas_cropped = cv2.cvtColor(canvas_cropped, cv2.COLOR_RGBA2GRAY) else: canvas = cv2.cvtColor(canvas, cv2.COLOR_RGB2GRAY) canvas_cropped = cv2.cvtColor(canvas_cropped, cv2.COLOR_RGB2GRAY) return [canvas, canvas_cropped] def motion2video(motion, h, w, save_path, colors, bg_color=(255, 255, 255), transparency=False, motion_tgt=None, fps=25, save_frame=True, grayscale=False, show_progress=True): nr_joints = motion.shape[0] as_array = save_path.endswith(".npy") vlen = motion.shape[-1] out_array = np.zeros([h, w, vlen]) if as_array else None videowriter = None if as_array else imageio.get_writer(save_path, fps=fps, codec='libx264') if save_frame: frames_dir = save_path[:-4] + '-frames' ensure_dir(frames_dir) iterator = range(vlen) if show_progress: iterator = tqdm(iterator) for i in iterator: [img, img_cropped] = joints2image(motion[:, :, i], colors, transparency=transparency, bg_color=bg_color, H=h, W=w, nr_joints=nr_joints, grayscale=grayscale) if motion_tgt is not None: [img_tgt, img_tgt_cropped] = joints2image(motion_tgt[:, :, i], colors, transparency=transparency, bg_color=bg_color, H=h, W=w, nr_joints=nr_joints, grayscale=grayscale) img_ori = img.copy() img = cv2.addWeighted(img_tgt, 0.3, img_ori, 0.7, 0) img_cropped = cv2.addWeighted(img_tgt, 0.3, img_ori, 0.7, 0) bb = bounding_box(img_cropped) img_cropped = img_cropped[:, bb[2]:bb[3], :] if save_frame: save_image(img_cropped, os.path.join(frames_dir, "%04d.png" % i)) if as_array: out_array[:, :, i] = img #else: videowriter.append_data(img) if as_array: np.save(save_path, out_array) else: videowriter.close() return out_array def motion2video_np(motion, h, w, colors, bg_color=(255, 255, 255), transparency=False, motion_tgt=None, show_progress=True, workers=6): nr_joints = motion.shape[0] vlen = motion.shape[-1] out_array = np.zeros([vlen, h, w , 3]) queue = [i for i in range(vlen)] lock = Lock() pbar = tqdm(total=vlen) if show_progress else None class Worker(Thread): def __init__(self): super(Worker, self).__init__() def run(self): while True: lock.acquire() if len(queue) == 0: lock.release() break else: i = queue.pop(0) lock.release() [img, img_cropped] = joints2image(motion[:, :, i], colors, transparency=transparency, bg_color=bg_color, H=h, W=w, nr_joints=nr_joints, grayscale=False) if motion_tgt is not None: [img_tgt, img_tgt_cropped] = joints2image(motion_tgt[:, :, i], colors, transparency=transparency, H=h, W=w, nr_joints=nr_joints, grayscale=False) img_ori = img.copy() img = cv2.addWeighted(img_tgt, 0.3, img_ori, 0.7, 0) # img_cropped = cv2.addWeighted(img_tgt, 0.3, img_ori, 0.7, 0) # bb = bounding_box(img_cropped) # img_cropped = img_cropped[:, bb[2]:bb[3], :] out_array[i, :, :] = img if show_progress: pbar.update(1) pool = [Worker() for _ in range(workers)] for worker in pool: worker.start() for worker in pool: worker.join() for worker in pool: del worker return out_array def save_image(image_numpy, image_path): image_pil = Image.fromarray(image_numpy) image_pil.save(image_path) def bounding_box(img): a = np.where(img != 0) bbox = np.min(a[0]), np.max(a[0]), np.min(a[1]), np.max(a[1]) return bbox def pose2im_all(all_peaks, H=512, W=512): limbSeq = [[1, 2], [2, 3], [3, 4], # right arm [1, 5], [5, 6], [6, 7], # left arm [8, 9], [9, 10], [10, 11], # right leg [8, 12], [12, 13], [13, 14], # left leg [1, 0], # head/neck [1, 8], # body, ] limb_colors = [[0, 60, 255], [0, 120, 255], [0, 180, 255], [180, 255, 0], [120, 255, 0], [60, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], [255, 170, 0], [255, 85, 0], [255, 0, 0], [0, 85, 255], [0, 0, 255], ] joint_colors = [[85, 0, 255], [0, 0, 255], [0, 60, 255], [0, 120, 255], [0, 180, 255], [180, 255, 0], [120, 255, 0], [60, 255, 0], [0, 0, 255], [170, 255, 0], [85, 255, 0], [0, 255, 0], [255, 170, 0], [255, 85, 0], [255, 0, 0], ] image = pose2im(all_peaks, limbSeq, limb_colors, joint_colors, H, W) return image def pose2im(all_peaks, limbSeq, limb_colors, joint_colors, H, W, _circle=True, _limb=True, imtype=np.uint8): canvas = np.zeros(shape=(H, W, 3)) canvas.fill(255) if _circle: for i in range(len(joint_colors)): cv2.circle(canvas, (int(all_peaks[i][0]), int(all_peaks[i][1])), 2, joint_colors[i], thickness=2) if _limb: stickwidth = 2 for i in range(len(limbSeq)): limb = limbSeq[i] cur_canvas = canvas.copy() point1_index = limb[0] point2_index = limb[1] if len(all_peaks[point1_index]) > 0 and len(all_peaks[point2_index]) > 0: point1 = all_peaks[point1_index][0:2] point2 = all_peaks[point2_index][0:2] X = [point1[1], point2[1]] Y = [point1[0], point2[0]] mX = np.mean(X) mY = np.mean(Y) # cv2.line() length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5 angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1) cv2.fillConvexPoly(cur_canvas, polygon, limb_colors[i]) canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0) return canvas.astype(imtype) def visualize_motion_in_training(outputs, mean_pose, std_pose, nr_visual=4, H=512, W=512): ret = {} for k, out in outputs.items(): motion = out[0].detach().cpu().numpy() inds = np.linspace(0, motion.shape[1] - 1, nr_visual, dtype=int) motion = motion[:, inds] motion = motion.reshape(-1, 2, motion.shape[-1]) motion = normalize_motion_inv(motion, mean_pose, std_pose) peaks = globalize_motion(motion) heatmaps = [] for i in range(peaks.shape[2]): skeleton = pose2im_all(peaks[:, :, i], H, W) heatmaps.append(skeleton) heatmaps = np.stack(heatmaps).transpose((0, 3, 1, 2)) / 255.0 ret[k] = heatmaps return ret if __name__ == '__main__': # 加载.npy文件 motion_data = np.load('/home/fazhong/studio/transmomo.pytorch/out/retarget_1_121.npy') # 设置视频参数 height = 512 # 视频的高度 width = 512 # 视频的宽度 save_path = 'Angry.mp4' # 保存视频的路径 colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255)] # 关节颜色 bg_color = (255, 255, 255) # 背景颜色 fps = 25 # 视频的帧率 # 调用函数生成视频 motion2video(motion_data, height, width, save_path, colors, bg_color=bg_color, transparency=False, fps=fps)