File size: 9,345 Bytes
854728f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b2451c
854728f
e4bc965
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import argparse
import cv2
import torch
import os
import shutil

from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision import transforms as T
from torchvision.transforms.functional import to_pil_image
from threading import Thread
from tqdm import tqdm
from PIL import Image
import gradio as gr
from dataset import VideoDataset, ZipDataset
from dataset import augmentation as A
from model import MattingBase, MattingRefine
from inference_utils import HomographicAlignment

# --------------- Utils ---------------


class VideoWriter:
    def __init__(self, path, frame_rate, width, height):
        self.out = cv2.VideoWriter(path, cv2.VideoWriter_fourcc(*'mp4v'), frame_rate, (width, height))
        
    def add_batch(self, frames):
        frames = frames.mul(255).byte()
        frames = frames.cpu().permute(0, 2, 3, 1).numpy()
        for i in range(frames.shape[0]):
            frame = frames[i]
            frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
            self.out.write(frame)
            

class ImageSequenceWriter:
    def __init__(self, path, extension):
        self.path = path
        self.extension = extension
        self.index = 0
        os.makedirs(path)
        
    def add_batch(self, frames):
        Thread(target=self._add_batch, args=(frames, self.index)).start()
        self.index += frames.shape[0]
            
    def _add_batch(self, frames, index):
        frames = frames.cpu()
        for i in range(frames.shape[0]):
            frame = frames[i]
            frame = to_pil_image(frame)
            frame.save(os.path.join(self.path, str(index + i).zfill(5) + '.' + self.extension))


# --------------- Main ---------------

def video_matting(video_src_content,video_bgr_content):
    src_video_path = './source/src_video.mp4'
    bgr_image_path = './source/bgr_image.png'
    with open(src_video_path, 'wb') as video_file:
        video_file.write(video_src_content)
    
    # 写入背景图片文件
    with open(bgr_image_path, 'wb') as bgr_file:
        bgr_file.write(video_bgr_content)
    video_src = src_video_path
    video_bgr = bgr_image_path
    default_args = {
    'model_type': 'mattingrefine',
    'model_backbone': 'resnet50',
    'model_backbone_scale': 0.25,
    'model_refine_mode': 'sampling',
    'model_refine_sample_pixels': 80000,
    'model_checkpoint': './pytorch_resnet50.pth',  
    'model_refine_threshold':0.7,
    'model_refine_kernel_size':3,
    'video_src': './source/src.mp4',          
    'video_bgr': './source/bgr.png',          
    'video_target_bgr': None,
    'video_resize': [1920, 1080],
    'device': 'cpu',  # 默认设置为CPU
    'preprocess_alignment': False,
    'output_dir': './output',        
    'output_types': ['com'],
    'output_format': 'video'
    }

    args = argparse.Namespace(**default_args)
    device = torch.device(args.device)

    # Load model
    if args.model_type == 'mattingbase':
        model = MattingBase(args.model_backbone)
    if args.model_type == 'mattingrefine':
        model = MattingRefine(
            args.model_backbone,
            args.model_backbone_scale,
            args.model_refine_mode,
            args.model_refine_sample_pixels,
            args.model_refine_threshold,
            args.model_refine_kernel_size)

    model = model.to(device).eval()
    model.load_state_dict(torch.load(args.model_checkpoint, map_location=device), strict=False)


    # Load video and background
    vid = VideoDataset(video_src)
    bgr = [Image.open(video_bgr).convert('RGB')]
    dataset = ZipDataset([vid, bgr], transforms=A.PairCompose([
        A.PairApply(T.Resize(args.video_resize[::-1]) if args.video_resize else nn.Identity()),
        HomographicAlignment() if args.preprocess_alignment else A.PairApply(nn.Identity()),
        A.PairApply(T.ToTensor())
    ]))
    if args.video_target_bgr:
        dataset = ZipDataset([dataset, VideoDataset(args.video_target_bgr, transforms=T.ToTensor())])

    # Create output directory
    # if os.path.exists(args.output_dir):
    #     if input(f'Directory {args.output_dir} already exists. Override? [Y/N]: ').lower() == 'y':
    #         shutil.rmtree(args.output_dir)
    #     else:
    #         exit()
    # os.makedirs(args.output_dir)


    # Prepare writers
    if args.output_format == 'video':
        h = args.video_resize[1] if args.video_resize is not None else vid.height
        w = args.video_resize[0] if args.video_resize is not None else vid.width
        if 'com' in args.output_types:
            com_writer = VideoWriter(os.path.join(args.output_dir, 'com.mp4'), vid.frame_rate, w, h)
        if 'pha' in args.output_types:
            pha_writer = VideoWriter(os.path.join(args.output_dir, 'pha.mp4'), vid.frame_rate, w, h)
        if 'fgr' in args.output_types:
            fgr_writer = VideoWriter(os.path.join(args.output_dir, 'fgr.mp4'), vid.frame_rate, w, h)
        if 'err' in args.output_types:
            err_writer = VideoWriter(os.path.join(args.output_dir, 'err.mp4'), vid.frame_rate, w, h)
        if 'ref' in args.output_types:
            ref_writer = VideoWriter(os.path.join(args.output_dir, 'ref.mp4'), vid.frame_rate, w, h)
    else:
        if 'com' in args.output_types:
            com_writer = ImageSequenceWriter(os.path.join(args.output_dir, 'com'), 'png')
        if 'pha' in args.output_types:
            pha_writer = ImageSequenceWriter(os.path.join(args.output_dir, 'pha'), 'jpg')
        if 'fgr' in args.output_types:
            fgr_writer = ImageSequenceWriter(os.path.join(args.output_dir, 'fgr'), 'jpg')
        if 'err' in args.output_types:
            err_writer = ImageSequenceWriter(os.path.join(args.output_dir, 'err'), 'jpg')
        if 'ref' in args.output_types:
            ref_writer = ImageSequenceWriter(os.path.join(args.output_dir, 'ref'), 'jpg')
        

    # Conversion loop
    with torch.no_grad():
        for input_batch in tqdm(DataLoader(dataset, batch_size=1, pin_memory=True)):
            if args.video_target_bgr:
                (src, bgr), tgt_bgr = input_batch
                tgt_bgr = tgt_bgr.to(device, non_blocking=True)
            else:
                src, bgr = input_batch
                tgt_bgr = torch.tensor([120/255, 255/255, 155/255], device=device).view(1, 3, 1, 1)
            src = src.to(device, non_blocking=True)
            bgr = bgr.to(device, non_blocking=True)
            
            if args.model_type == 'mattingbase':
                pha, fgr, err, _ = model(src, bgr)
            elif args.model_type == 'mattingrefine':
                pha, fgr, _, _, err, ref = model(src, bgr)
            elif args.model_type == 'mattingbm':
                pha, fgr = model(src, bgr)

            if 'com' in args.output_types:
                if args.output_format == 'video':
                    # Output composite with green background
                    com = fgr * pha + tgt_bgr * (1 - pha)
                    com_writer.add_batch(com)
                else:
                    # Output composite as rgba png images
                    com = torch.cat([fgr * pha.ne(0), pha], dim=1)
                    com_writer.add_batch(com)
            if 'pha' in args.output_types:
                pha_writer.add_batch(pha)
            if 'fgr' in args.output_types:
                fgr_writer.add_batch(fgr)
            if 'err' in args.output_types:
                err_writer.add_batch(F.interpolate(err, src.shape[2:], mode='bilinear', align_corners=False))
            if 'ref' in args.output_types:
                ref_writer.add_batch(F.interpolate(ref, src.shape[2:], mode='nearest'))

    return './output/com.mp4'

# 读取本地视频文件的二进制数据
def get_video_content(video_path):
    with open(video_path, 'rb') as file:
        video_content = file.read()
    return video_content

# 假设你的视频文件路径是'./local_video.mp4'
local_video_path = './output/com.mp4'
local_video_content = get_video_content(local_video_path)

# 创建Gradio界面
with gr.Blocks() as demo:
    gr.Markdown("## Video Matting")
    with gr.Row():
        video_src = gr.File(label="Upload Source Video (.mp4)", type="binary", file_types=["mp4"])
        video_bgr = gr.File(label="Upload Background Image (.png)", type="binary", file_types=["png"])
    with gr.Row():
        output_video = gr.Video(label="Result Video")
    submit_button = gr.Button("Start Matting")
    
    # def download_video(video_path):
    #     if os.path.exists(video_path):
    #         with open(video_path, 'rb') as file:
    #             video_data = file.read()
    #         return video_data, "video/mp4", os.path.basename(video_path)
    #     else:
    #         return "Not Found", "text/plain", None

    def clear_outputs():
        output_video.update(value=None)
    
    submit_button.click(
        fn=video_matting,
        inputs=[video_src, video_bgr],
        outputs=[output_video]
    )
    # download_button = gr.Button("Download")
    # download_button.click(
    #     download_video,
    #     inputs=[output_video],  # 从视频组件传递视频路径
    #     outputs=[gr.File(label="Download")]
    # )
    clear_button = gr.Button("Clear")
    clear_button.click(fn=clear_outputs, inputs=[], outputs=[])


if __name__ == "__main__":
    demo.launch()