Spaces:
Sleeping
Sleeping
File size: 9,392 Bytes
854728f e4bc965 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import argparse
import cv2
import torch
import os
import shutil
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision import transforms as T
from torchvision.transforms.functional import to_pil_image
from threading import Thread
from tqdm import tqdm
from PIL import Image
import gradio as gr
from dataset import VideoDataset, ZipDataset
from dataset import augmentation as A
from model import MattingBase, MattingRefine
from inference_utils import HomographicAlignment
# --------------- Arguments ---------------
# --------------- Utils ---------------
class VideoWriter:
def __init__(self, path, frame_rate, width, height):
self.out = cv2.VideoWriter(path, cv2.VideoWriter_fourcc(*'mp4v'), frame_rate, (width, height))
def add_batch(self, frames):
frames = frames.mul(255).byte()
frames = frames.cpu().permute(0, 2, 3, 1).numpy()
for i in range(frames.shape[0]):
frame = frames[i]
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
self.out.write(frame)
class ImageSequenceWriter:
def __init__(self, path, extension):
self.path = path
self.extension = extension
self.index = 0
os.makedirs(path)
def add_batch(self, frames):
Thread(target=self._add_batch, args=(frames, self.index)).start()
self.index += frames.shape[0]
def _add_batch(self, frames, index):
frames = frames.cpu()
for i in range(frames.shape[0]):
frame = frames[i]
frame = to_pil_image(frame)
frame.save(os.path.join(self.path, str(index + i).zfill(5) + '.' + self.extension))
# --------------- Main ---------------
def video_matting(video_src_content,video_bgr_content):
src_video_path = './source/src_video.mp4'
bgr_image_path = './source/bgr_image.png'
with open(src_video_path, 'wb') as video_file:
video_file.write(video_src_content)
# 写入背景图片文件
with open(bgr_image_path, 'wb') as bgr_file:
bgr_file.write(video_bgr_content)
video_src = src_video_path
video_bgr = bgr_image_path
default_args = {
'model_type': 'mattingrefine',
'model_backbone': 'resnet50',
'model_backbone_scale': 0.25,
'model_refine_mode': 'sampling',
'model_refine_sample_pixels': 80000,
'model_checkpoint': './pytorch_resnet50.pth',
'model_refine_threshold':0.7,
'model_refine_kernel_size':3,
'video_src': './source/src.mp4',
'video_bgr': './source/bgr.png',
'video_target_bgr': None,
'video_resize': [1920, 1080],
'device': 'cpu', # 默认设置为CPU
'preprocess_alignment': False,
'output_dir': './output',
'output_types': ['com'],
'output_format': 'video'
}
args = argparse.Namespace(**default_args)
device = torch.device(args.device)
# Load model
if args.model_type == 'mattingbase':
model = MattingBase(args.model_backbone)
if args.model_type == 'mattingrefine':
model = MattingRefine(
args.model_backbone,
args.model_backbone_scale,
args.model_refine_mode,
args.model_refine_sample_pixels,
args.model_refine_threshold,
args.model_refine_kernel_size)
model = model.to(device).eval()
model.load_state_dict(torch.load(args.model_checkpoint, map_location=device), strict=False)
# Load video and background
vid = VideoDataset(video_src)
bgr = [Image.open(video_bgr).convert('RGB')]
dataset = ZipDataset([vid, bgr], transforms=A.PairCompose([
A.PairApply(T.Resize(args.video_resize[::-1]) if args.video_resize else nn.Identity()),
HomographicAlignment() if args.preprocess_alignment else A.PairApply(nn.Identity()),
A.PairApply(T.ToTensor())
]))
if args.video_target_bgr:
dataset = ZipDataset([dataset, VideoDataset(args.video_target_bgr, transforms=T.ToTensor())])
# Create output directory
# if os.path.exists(args.output_dir):
# if input(f'Directory {args.output_dir} already exists. Override? [Y/N]: ').lower() == 'y':
# shutil.rmtree(args.output_dir)
# else:
# exit()
# os.makedirs(args.output_dir)
# Prepare writers
if args.output_format == 'video':
h = args.video_resize[1] if args.video_resize is not None else vid.height
w = args.video_resize[0] if args.video_resize is not None else vid.width
if 'com' in args.output_types:
com_writer = VideoWriter(os.path.join(args.output_dir, 'com.mp4'), vid.frame_rate, w, h)
if 'pha' in args.output_types:
pha_writer = VideoWriter(os.path.join(args.output_dir, 'pha.mp4'), vid.frame_rate, w, h)
if 'fgr' in args.output_types:
fgr_writer = VideoWriter(os.path.join(args.output_dir, 'fgr.mp4'), vid.frame_rate, w, h)
if 'err' in args.output_types:
err_writer = VideoWriter(os.path.join(args.output_dir, 'err.mp4'), vid.frame_rate, w, h)
if 'ref' in args.output_types:
ref_writer = VideoWriter(os.path.join(args.output_dir, 'ref.mp4'), vid.frame_rate, w, h)
else:
if 'com' in args.output_types:
com_writer = ImageSequenceWriter(os.path.join(args.output_dir, 'com'), 'png')
if 'pha' in args.output_types:
pha_writer = ImageSequenceWriter(os.path.join(args.output_dir, 'pha'), 'jpg')
if 'fgr' in args.output_types:
fgr_writer = ImageSequenceWriter(os.path.join(args.output_dir, 'fgr'), 'jpg')
if 'err' in args.output_types:
err_writer = ImageSequenceWriter(os.path.join(args.output_dir, 'err'), 'jpg')
if 'ref' in args.output_types:
ref_writer = ImageSequenceWriter(os.path.join(args.output_dir, 'ref'), 'jpg')
# Conversion loop
with torch.no_grad():
for input_batch in tqdm(DataLoader(dataset, batch_size=1, pin_memory=True)):
if args.video_target_bgr:
(src, bgr), tgt_bgr = input_batch
tgt_bgr = tgt_bgr.to(device, non_blocking=True)
else:
src, bgr = input_batch
tgt_bgr = torch.tensor([120/255, 255/255, 155/255], device=device).view(1, 3, 1, 1)
src = src.to(device, non_blocking=True)
bgr = bgr.to(device, non_blocking=True)
if args.model_type == 'mattingbase':
pha, fgr, err, _ = model(src, bgr)
elif args.model_type == 'mattingrefine':
pha, fgr, _, _, err, ref = model(src, bgr)
elif args.model_type == 'mattingbm':
pha, fgr = model(src, bgr)
if 'com' in args.output_types:
if args.output_format == 'video':
# Output composite with green background
com = fgr * pha + tgt_bgr * (1 - pha)
com_writer.add_batch(com)
else:
# Output composite as rgba png images
com = torch.cat([fgr * pha.ne(0), pha], dim=1)
com_writer.add_batch(com)
if 'pha' in args.output_types:
pha_writer.add_batch(pha)
if 'fgr' in args.output_types:
fgr_writer.add_batch(fgr)
if 'err' in args.output_types:
err_writer.add_batch(F.interpolate(err, src.shape[2:], mode='bilinear', align_corners=False))
if 'ref' in args.output_types:
ref_writer.add_batch(F.interpolate(ref, src.shape[2:], mode='nearest'))
return './output/com.mp4'
# 读取本地视频文件的二进制数据
def get_video_content(video_path):
with open(video_path, 'rb') as file:
video_content = file.read()
return video_content
# 假设你的视频文件路径是'./local_video.mp4'
local_video_path = './output/com.mp4'
local_video_content = get_video_content(local_video_path)
# 创建Gradio界面
with gr.Blocks() as demo:
gr.Markdown("## Video Matting")
with gr.Row():
video_src = gr.File(label="Upload Source Video (.mp4)", type="binary", file_types=["mp4"])
video_bgr = gr.File(label="Upload Background Image (.png)", type="binary", file_types=["png"])
with gr.Row():
output_video = gr.Video(label="Result Video")
submit_button = gr.Button("Start Matting")
# def download_video(video_path):
# if os.path.exists(video_path):
# with open(video_path, 'rb') as file:
# video_data = file.read()
# return video_data, "video/mp4", os.path.basename(video_path)
# else:
# return "Not Found", "text/plain", None
def clear_outputs():
output_video.update(value=None)
submit_button.click(
fn=video_matting,
inputs=[video_src, video_bgr],
outputs=[output_video]
)
# download_button = gr.Button("Download")
# download_button.click(
# download_video,
# inputs=[output_video], # 从视频组件传递视频路径
# outputs=[gr.File(label="Download")]
# )
clear_button = gr.Button("Clear")
clear_button.click(fn=clear_outputs, inputs=[], outputs=[])
if __name__ == "__main__":
demo.launch()
|