File size: 9,177 Bytes
854728f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import torch
from torch import nn
from torch.nn import functional as F
from torchvision.models.segmentation.deeplabv3 import ASPP

from .decoder import Decoder
from .mobilenet import MobileNetV2Encoder
from .refiner import Refiner
from .resnet import ResNetEncoder
from .utils import load_matched_state_dict


class Base(nn.Module):
    """
    A generic implementation of the base encoder-decoder network inspired by DeepLab.
    Accepts arbitrary channels for input and output.
    """
    
    def __init__(self, backbone: str, in_channels: int, out_channels: int):
        super().__init__()
        assert backbone in ["resnet50", "resnet101", "mobilenetv2"]
        if backbone in ['resnet50', 'resnet101']:
            self.backbone = ResNetEncoder(in_channels, variant=backbone)
            self.aspp = ASPP(2048, [3, 6, 9])
            self.decoder = Decoder([256, 128, 64, 48, out_channels], [512, 256, 64, in_channels])
        else:
            self.backbone = MobileNetV2Encoder(in_channels)
            self.aspp = ASPP(320, [3, 6, 9])
            self.decoder = Decoder([256, 128, 64, 48, out_channels], [32, 24, 16, in_channels])

    def forward(self, x):
        x, *shortcuts = self.backbone(x)
        x = self.aspp(x)
        x = self.decoder(x, *shortcuts)
        return x
    
    def load_pretrained_deeplabv3_state_dict(self, state_dict, print_stats=True):
        # Pretrained DeepLabV3 models are provided by <https://github.com/VainF/DeepLabV3Plus-Pytorch>.
        # This method converts and loads their pretrained state_dict to match with our model structure.
        # This method is not needed if you are not planning to train from deeplab weights.
        # Use load_state_dict() for normal weight loading.
        
        # Convert state_dict naming for aspp module
        state_dict = {k.replace('classifier.classifier.0', 'aspp'): v for k, v in state_dict.items()}

        if isinstance(self.backbone, ResNetEncoder):
            # ResNet backbone does not need change.
            load_matched_state_dict(self, state_dict, print_stats)
        else:
            # Change MobileNetV2 backbone to state_dict format, then change back after loading.
            backbone_features = self.backbone.features
            self.backbone.low_level_features = backbone_features[:4]
            self.backbone.high_level_features = backbone_features[4:]
            del self.backbone.features
            load_matched_state_dict(self, state_dict, print_stats)
            self.backbone.features = backbone_features
            del self.backbone.low_level_features
            del self.backbone.high_level_features


class MattingBase(Base):
    """
    MattingBase is used to produce coarse global results at a lower resolution.
    MattingBase extends Base.
    
    Args:
        backbone: ["resnet50", "resnet101", "mobilenetv2"]
        
    Input:
        src: (B, 3, H, W) the source image. Channels are RGB values normalized to 0 ~ 1.
        bgr: (B, 3, H, W) the background image . Channels are RGB values normalized to 0 ~ 1.
    
    Output:
        pha: (B, 1, H, W) the alpha prediction. Normalized to 0 ~ 1.
        fgr: (B, 3, H, W) the foreground prediction. Channels are RGB values normalized to 0 ~ 1.
        err: (B, 1, H, W) the error prediction. Normalized to 0 ~ 1.
        hid: (B, 32, H, W) the hidden encoding. Used for connecting refiner module.
        
    Example:
        model = MattingBase(backbone='resnet50')
        
        pha, fgr, err, hid = model(src, bgr)    # for training
        pha, fgr = model(src, bgr)[:2]          # for inference
    """
    
    def __init__(self, backbone: str):
        super().__init__(backbone, in_channels=6, out_channels=(1 + 3 + 1 + 32))
        
    def forward(self, src, bgr):
        x = torch.cat([src, bgr], dim=1)
        x, *shortcuts = self.backbone(x)
        x = self.aspp(x)
        x = self.decoder(x, *shortcuts)
        pha = x[:, 0:1].clamp_(0., 1.)
        fgr = x[:, 1:4].add(src).clamp_(0., 1.)
        err = x[:, 4:5].clamp_(0., 1.)
        hid = x[:, 5: ].relu_()
        return pha, fgr, err, hid


class MattingRefine(MattingBase):
    """
    MattingRefine includes the refiner module to upsample coarse result to full resolution.
    MattingRefine extends MattingBase.
    
    Args:
        backbone: ["resnet50", "resnet101", "mobilenetv2"]
        backbone_scale: The image downsample scale for passing through backbone, default 1/4 or 0.25.
                        Must not be greater than 1/2.
        refine_mode: refine area selection mode. Options:
            "full"         - No area selection, refine everywhere using regular Conv2d.
            "sampling"     - Refine fixed amount of pixels ranked by the top most errors.
            "thresholding" - Refine varying amount of pixels that has more error than the threshold.
        refine_sample_pixels: number of pixels to refine. Only used when mode == "sampling".
        refine_threshold: error threshold ranged from 0 ~ 1. Refine where err > threshold. Only used when mode == "thresholding".
        refine_kernel_size: the refiner's convolutional kernel size. Options: [1, 3]
        refine_prevent_oversampling: prevent sampling more pixels than needed for sampling mode. Set False only for speedtest.

    Input:
        src: (B, 3, H, W) the source image. Channels are RGB values normalized to 0 ~ 1.
        bgr: (B, 3, H, W) the background image. Channels are RGB values normalized to 0 ~ 1.
    
    Output:
        pha: (B, 1, H, W) the alpha prediction. Normalized to 0 ~ 1.
        fgr: (B, 3, H, W) the foreground prediction. Channels are RGB values normalized to 0 ~ 1.
        pha_sm: (B, 1, Hc, Wc) the coarse alpha prediction from matting base. Normalized to 0 ~ 1.
        fgr_sm: (B, 3, Hc, Hc) the coarse foreground prediction from matting base. Normalized to 0 ~ 1.
        err_sm: (B, 1, Hc, Wc) the coarse error prediction from matting base. Normalized to 0 ~ 1.
        ref_sm: (B, 1, H/4, H/4) the quarter resolution refinement map. 1 indicates refined 4x4 patch locations.
        
    Example:
        model = MattingRefine(backbone='resnet50', backbone_scale=1/4, refine_mode='sampling', refine_sample_pixels=80_000)
        model = MattingRefine(backbone='resnet50', backbone_scale=1/4, refine_mode='thresholding', refine_threshold=0.1)
        model = MattingRefine(backbone='resnet50', backbone_scale=1/4, refine_mode='full')
        
        pha, fgr, pha_sm, fgr_sm, err_sm, ref_sm = model(src, bgr)   # for training
        pha, fgr = model(src, bgr)[:2]                               # for inference
    """
    
    def __init__(self,
                 backbone: str,
                 backbone_scale: float = 1/4,
                 refine_mode: str = 'sampling',
                 refine_sample_pixels: int = 80_000,
                 refine_threshold: float = 0.1,
                 refine_kernel_size: int = 3,
                 refine_prevent_oversampling: bool = True,
                 refine_patch_crop_method: str = 'unfold',
                 refine_patch_replace_method: str = 'scatter_nd'):
        assert backbone_scale <= 1/2, 'backbone_scale should not be greater than 1/2'
        super().__init__(backbone)
        self.backbone_scale = backbone_scale
        self.refiner = Refiner(refine_mode,
                               refine_sample_pixels,
                               refine_threshold,
                               refine_kernel_size,
                               refine_prevent_oversampling,
                               refine_patch_crop_method,
                               refine_patch_replace_method)
    
    def forward(self, src, bgr):
        assert src.size() == bgr.size(), 'src and bgr must have the same shape'
        assert src.size(2) // 4 * 4 == src.size(2) and src.size(3) // 4 * 4 == src.size(3), \
            'src and bgr must have width and height that are divisible by 4'
        
        # Downsample src and bgr for backbone
        src_sm = F.interpolate(src,
                               scale_factor=self.backbone_scale,
                               mode='bilinear',
                               align_corners=False,
                               recompute_scale_factor=True)
        bgr_sm = F.interpolate(bgr,
                               scale_factor=self.backbone_scale,
                               mode='bilinear',
                               align_corners=False,
                               recompute_scale_factor=True)
        
        # Base
        x = torch.cat([src_sm, bgr_sm], dim=1)
        x, *shortcuts = self.backbone(x)
        x = self.aspp(x)
        x = self.decoder(x, *shortcuts)
        pha_sm = x[:, 0:1].clamp_(0., 1.)
        fgr_sm = x[:, 1:4]
        err_sm = x[:, 4:5].clamp_(0., 1.)
        hid_sm = x[:, 5: ].relu_()

        # Refiner
        pha, fgr, ref_sm = self.refiner(src, bgr, pha_sm, fgr_sm, err_sm, hid_sm)
        
        # Clamp outputs
        pha = pha.clamp_(0., 1.)
        fgr = fgr.add_(src).clamp_(0., 1.)
        fgr_sm = src_sm.add_(fgr_sm).clamp_(0., 1.)
        
        return pha, fgr, pha_sm, fgr_sm, err_sm, ref_sm