Spaces:
Sleeping
Sleeping
File size: 12,518 Bytes
854728f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import torch
import torchvision
from torch import nn
from torch.nn import functional as F
from typing import Tuple
class Refiner(nn.Module):
"""
Refiner refines the coarse output to full resolution.
Args:
mode: area selection mode. Options:
"full" - No area selection, refine everywhere using regular Conv2d.
"sampling" - Refine fixed amount of pixels ranked by the top most errors.
"thresholding" - Refine varying amount of pixels that have greater error than the threshold.
sample_pixels: number of pixels to refine. Only used when mode == "sampling".
threshold: error threshold ranged from 0 ~ 1. Refine where err > threshold. Only used when mode == "thresholding".
kernel_size: The convolution kernel_size. Options: [1, 3]
prevent_oversampling: True for regular cases, False for speedtest.
Compatibility Args:
patch_crop_method: the method for cropping patches. Options:
"unfold" - Best performance for PyTorch and TorchScript.
"roi_align" - Another way for croping patches.
"gather" - Another way for croping patches.
patch_replace_method: the method for replacing patches. Options:
"scatter_nd" - Best performance for PyTorch and TorchScript.
"scatter_element" - Another way for replacing patches.
Input:
src: (B, 3, H, W) full resolution source image.
bgr: (B, 3, H, W) full resolution background image.
pha: (B, 1, Hc, Wc) coarse alpha prediction.
fgr: (B, 3, Hc, Wc) coarse foreground residual prediction.
err: (B, 1, Hc, Hc) coarse error prediction.
hid: (B, 32, Hc, Hc) coarse hidden encoding.
Output:
pha: (B, 1, H, W) full resolution alpha prediction.
fgr: (B, 3, H, W) full resolution foreground residual prediction.
ref: (B, 1, H/4, W/4) quarter resolution refinement selection map. 1 indicates refined 4x4 patch locations.
"""
# For TorchScript export optimization.
__constants__ = ['kernel_size', 'patch_crop_method', 'patch_replace_method']
def __init__(self,
mode: str,
sample_pixels: int,
threshold: float,
kernel_size: int = 3,
prevent_oversampling: bool = True,
patch_crop_method: str = 'unfold',
patch_replace_method: str = 'scatter_nd'):
super().__init__()
assert mode in ['full', 'sampling', 'thresholding']
assert kernel_size in [1, 3]
assert patch_crop_method in ['unfold', 'roi_align', 'gather']
assert patch_replace_method in ['scatter_nd', 'scatter_element']
self.mode = mode
self.sample_pixels = sample_pixels
self.threshold = threshold
self.kernel_size = kernel_size
self.prevent_oversampling = prevent_oversampling
self.patch_crop_method = patch_crop_method
self.patch_replace_method = patch_replace_method
channels = [32, 24, 16, 12, 4]
self.conv1 = nn.Conv2d(channels[0] + 6 + 4, channels[1], kernel_size, bias=False)
self.bn1 = nn.BatchNorm2d(channels[1])
self.conv2 = nn.Conv2d(channels[1], channels[2], kernel_size, bias=False)
self.bn2 = nn.BatchNorm2d(channels[2])
self.conv3 = nn.Conv2d(channels[2] + 6, channels[3], kernel_size, bias=False)
self.bn3 = nn.BatchNorm2d(channels[3])
self.conv4 = nn.Conv2d(channels[3], channels[4], kernel_size, bias=True)
self.relu = nn.ReLU(True)
def forward(self,
src: torch.Tensor,
bgr: torch.Tensor,
pha: torch.Tensor,
fgr: torch.Tensor,
err: torch.Tensor,
hid: torch.Tensor):
H_full, W_full = src.shape[2:]
H_half, W_half = H_full // 2, W_full // 2
H_quat, W_quat = H_full // 4, W_full // 4
src_bgr = torch.cat([src, bgr], dim=1)
if self.mode != 'full':
err = F.interpolate(err, (H_quat, W_quat), mode='bilinear', align_corners=False)
ref = self.select_refinement_regions(err)
idx = torch.nonzero(ref.squeeze(1))
idx = idx[:, 0], idx[:, 1], idx[:, 2]
if idx[0].size(0) > 0:
x = torch.cat([hid, pha, fgr], dim=1)
x = F.interpolate(x, (H_half, W_half), mode='bilinear', align_corners=False)
x = self.crop_patch(x, idx, 2, 3 if self.kernel_size == 3 else 0)
y = F.interpolate(src_bgr, (H_half, W_half), mode='bilinear', align_corners=False)
y = self.crop_patch(y, idx, 2, 3 if self.kernel_size == 3 else 0)
x = self.conv1(torch.cat([x, y], dim=1))
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = F.interpolate(x, 8 if self.kernel_size == 3 else 4, mode='nearest')
y = self.crop_patch(src_bgr, idx, 4, 2 if self.kernel_size == 3 else 0)
x = self.conv3(torch.cat([x, y], dim=1))
x = self.bn3(x)
x = self.relu(x)
x = self.conv4(x)
out = torch.cat([pha, fgr], dim=1)
out = F.interpolate(out, (H_full, W_full), mode='bilinear', align_corners=False)
out = self.replace_patch(out, x, idx)
pha = out[:, :1]
fgr = out[:, 1:]
else:
pha = F.interpolate(pha, (H_full, W_full), mode='bilinear', align_corners=False)
fgr = F.interpolate(fgr, (H_full, W_full), mode='bilinear', align_corners=False)
else:
x = torch.cat([hid, pha, fgr], dim=1)
x = F.interpolate(x, (H_half, W_half), mode='bilinear', align_corners=False)
y = F.interpolate(src_bgr, (H_half, W_half), mode='bilinear', align_corners=False)
if self.kernel_size == 3:
x = F.pad(x, (3, 3, 3, 3))
y = F.pad(y, (3, 3, 3, 3))
x = self.conv1(torch.cat([x, y], dim=1))
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
if self.kernel_size == 3:
x = F.interpolate(x, (H_full + 4, W_full + 4))
y = F.pad(src_bgr, (2, 2, 2, 2))
else:
x = F.interpolate(x, (H_full, W_full), mode='nearest')
y = src_bgr
x = self.conv3(torch.cat([x, y], dim=1))
x = self.bn3(x)
x = self.relu(x)
x = self.conv4(x)
pha = x[:, :1]
fgr = x[:, 1:]
ref = torch.ones((src.size(0), 1, H_quat, W_quat), device=src.device, dtype=src.dtype)
return pha, fgr, ref
def select_refinement_regions(self, err: torch.Tensor):
"""
Select refinement regions.
Input:
err: error map (B, 1, H, W)
Output:
ref: refinement regions (B, 1, H, W). FloatTensor. 1 is selected, 0 is not.
"""
if self.mode == 'sampling':
# Sampling mode.
b, _, h, w = err.shape
err = err.view(b, -1)
idx = err.topk(self.sample_pixels // 16, dim=1, sorted=False).indices
ref = torch.zeros_like(err)
ref.scatter_(1, idx, 1.)
if self.prevent_oversampling:
ref.mul_(err.gt(0).float())
ref = ref.view(b, 1, h, w)
else:
# Thresholding mode.
ref = err.gt(self.threshold).float()
return ref
def crop_patch(self,
x: torch.Tensor,
idx: Tuple[torch.Tensor, torch.Tensor, torch.Tensor],
size: int,
padding: int):
"""
Crops selected patches from image given indices.
Inputs:
x: image (B, C, H, W).
idx: selection indices Tuple[(P,), (P,), (P,),], where the 3 values are (B, H, W) index.
size: center size of the patch, also stride of the crop.
padding: expansion size of the patch.
Output:
patch: (P, C, h, w), where h = w = size + 2 * padding.
"""
if padding != 0:
x = F.pad(x, (padding,) * 4)
if self.patch_crop_method == 'unfold':
# Use unfold. Best performance for PyTorch and TorchScript.
return x.permute(0, 2, 3, 1) \
.unfold(1, size + 2 * padding, size) \
.unfold(2, size + 2 * padding, size)[idx[0], idx[1], idx[2]]
elif self.patch_crop_method == 'roi_align':
# Use roi_align. Best compatibility for ONNX.
idx = idx[0].type_as(x), idx[1].type_as(x), idx[2].type_as(x)
b = idx[0]
x1 = idx[2] * size - 0.5
y1 = idx[1] * size - 0.5
x2 = idx[2] * size + size + 2 * padding - 0.5
y2 = idx[1] * size + size + 2 * padding - 0.5
boxes = torch.stack([b, x1, y1, x2, y2], dim=1)
return torchvision.ops.roi_align(x, boxes, size + 2 * padding, sampling_ratio=1)
else:
# Use gather. Crops out patches pixel by pixel.
idx_pix = self.compute_pixel_indices(x, idx, size, padding)
pat = torch.gather(x.view(-1), 0, idx_pix.view(-1))
pat = pat.view(-1, x.size(1), size + 2 * padding, size + 2 * padding)
return pat
def replace_patch(self,
x: torch.Tensor,
y: torch.Tensor,
idx: Tuple[torch.Tensor, torch.Tensor, torch.Tensor]):
"""
Replaces patches back into image given index.
Inputs:
x: image (B, C, H, W)
y: patches (P, C, h, w)
idx: selection indices Tuple[(P,), (P,), (P,)] where the 3 values are (B, H, W) index.
Output:
image: (B, C, H, W), where patches at idx locations are replaced with y.
"""
xB, xC, xH, xW = x.shape
yB, yC, yH, yW = y.shape
if self.patch_replace_method == 'scatter_nd':
# Use scatter_nd. Best performance for PyTorch and TorchScript. Replacing patch by patch.
x = x.view(xB, xC, xH // yH, yH, xW // yW, yW).permute(0, 2, 4, 1, 3, 5)
x[idx[0], idx[1], idx[2]] = y
x = x.permute(0, 3, 1, 4, 2, 5).view(xB, xC, xH, xW)
return x
else:
# Use scatter_element. Best compatibility for ONNX. Replacing pixel by pixel.
idx_pix = self.compute_pixel_indices(x, idx, size=4, padding=0)
return x.view(-1).scatter_(0, idx_pix.view(-1), y.view(-1)).view(x.shape)
def compute_pixel_indices(self,
x: torch.Tensor,
idx: Tuple[torch.Tensor, torch.Tensor, torch.Tensor],
size: int,
padding: int):
"""
Compute selected pixel indices in the tensor.
Used for crop_method == 'gather' and replace_method == 'scatter_element', which crop and replace pixel by pixel.
Input:
x: image: (B, C, H, W)
idx: selection indices Tuple[(P,), (P,), (P,),], where the 3 values are (B, H, W) index.
size: center size of the patch, also stride of the crop.
padding: expansion size of the patch.
Output:
idx: (P, C, O, O) long tensor where O is the output size: size + 2 * padding, P is number of patches.
the element are indices pointing to the input x.view(-1).
"""
B, C, H, W = x.shape
S, P = size, padding
O = S + 2 * P
b, y, x = idx
n = b.size(0)
c = torch.arange(C)
o = torch.arange(O)
idx_pat = (c * H * W).view(C, 1, 1).expand([C, O, O]) + (o * W).view(1, O, 1).expand([C, O, O]) + o.view(1, 1, O).expand([C, O, O])
idx_loc = b * W * H + y * W * S + x * S
idx_pix = idx_loc.view(-1, 1, 1, 1).expand([n, C, O, O]) + idx_pat.view(1, C, O, O).expand([n, C, O, O])
return idx_pix
|