VideoMatting / model /refiner.py
Fazhong Liu
init
854728f
raw
history blame
12.5 kB
import torch
import torchvision
from torch import nn
from torch.nn import functional as F
from typing import Tuple
class Refiner(nn.Module):
"""
Refiner refines the coarse output to full resolution.
Args:
mode: area selection mode. Options:
"full" - No area selection, refine everywhere using regular Conv2d.
"sampling" - Refine fixed amount of pixels ranked by the top most errors.
"thresholding" - Refine varying amount of pixels that have greater error than the threshold.
sample_pixels: number of pixels to refine. Only used when mode == "sampling".
threshold: error threshold ranged from 0 ~ 1. Refine where err > threshold. Only used when mode == "thresholding".
kernel_size: The convolution kernel_size. Options: [1, 3]
prevent_oversampling: True for regular cases, False for speedtest.
Compatibility Args:
patch_crop_method: the method for cropping patches. Options:
"unfold" - Best performance for PyTorch and TorchScript.
"roi_align" - Another way for croping patches.
"gather" - Another way for croping patches.
patch_replace_method: the method for replacing patches. Options:
"scatter_nd" - Best performance for PyTorch and TorchScript.
"scatter_element" - Another way for replacing patches.
Input:
src: (B, 3, H, W) full resolution source image.
bgr: (B, 3, H, W) full resolution background image.
pha: (B, 1, Hc, Wc) coarse alpha prediction.
fgr: (B, 3, Hc, Wc) coarse foreground residual prediction.
err: (B, 1, Hc, Hc) coarse error prediction.
hid: (B, 32, Hc, Hc) coarse hidden encoding.
Output:
pha: (B, 1, H, W) full resolution alpha prediction.
fgr: (B, 3, H, W) full resolution foreground residual prediction.
ref: (B, 1, H/4, W/4) quarter resolution refinement selection map. 1 indicates refined 4x4 patch locations.
"""
# For TorchScript export optimization.
__constants__ = ['kernel_size', 'patch_crop_method', 'patch_replace_method']
def __init__(self,
mode: str,
sample_pixels: int,
threshold: float,
kernel_size: int = 3,
prevent_oversampling: bool = True,
patch_crop_method: str = 'unfold',
patch_replace_method: str = 'scatter_nd'):
super().__init__()
assert mode in ['full', 'sampling', 'thresholding']
assert kernel_size in [1, 3]
assert patch_crop_method in ['unfold', 'roi_align', 'gather']
assert patch_replace_method in ['scatter_nd', 'scatter_element']
self.mode = mode
self.sample_pixels = sample_pixels
self.threshold = threshold
self.kernel_size = kernel_size
self.prevent_oversampling = prevent_oversampling
self.patch_crop_method = patch_crop_method
self.patch_replace_method = patch_replace_method
channels = [32, 24, 16, 12, 4]
self.conv1 = nn.Conv2d(channels[0] + 6 + 4, channels[1], kernel_size, bias=False)
self.bn1 = nn.BatchNorm2d(channels[1])
self.conv2 = nn.Conv2d(channels[1], channels[2], kernel_size, bias=False)
self.bn2 = nn.BatchNorm2d(channels[2])
self.conv3 = nn.Conv2d(channels[2] + 6, channels[3], kernel_size, bias=False)
self.bn3 = nn.BatchNorm2d(channels[3])
self.conv4 = nn.Conv2d(channels[3], channels[4], kernel_size, bias=True)
self.relu = nn.ReLU(True)
def forward(self,
src: torch.Tensor,
bgr: torch.Tensor,
pha: torch.Tensor,
fgr: torch.Tensor,
err: torch.Tensor,
hid: torch.Tensor):
H_full, W_full = src.shape[2:]
H_half, W_half = H_full // 2, W_full // 2
H_quat, W_quat = H_full // 4, W_full // 4
src_bgr = torch.cat([src, bgr], dim=1)
if self.mode != 'full':
err = F.interpolate(err, (H_quat, W_quat), mode='bilinear', align_corners=False)
ref = self.select_refinement_regions(err)
idx = torch.nonzero(ref.squeeze(1))
idx = idx[:, 0], idx[:, 1], idx[:, 2]
if idx[0].size(0) > 0:
x = torch.cat([hid, pha, fgr], dim=1)
x = F.interpolate(x, (H_half, W_half), mode='bilinear', align_corners=False)
x = self.crop_patch(x, idx, 2, 3 if self.kernel_size == 3 else 0)
y = F.interpolate(src_bgr, (H_half, W_half), mode='bilinear', align_corners=False)
y = self.crop_patch(y, idx, 2, 3 if self.kernel_size == 3 else 0)
x = self.conv1(torch.cat([x, y], dim=1))
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = F.interpolate(x, 8 if self.kernel_size == 3 else 4, mode='nearest')
y = self.crop_patch(src_bgr, idx, 4, 2 if self.kernel_size == 3 else 0)
x = self.conv3(torch.cat([x, y], dim=1))
x = self.bn3(x)
x = self.relu(x)
x = self.conv4(x)
out = torch.cat([pha, fgr], dim=1)
out = F.interpolate(out, (H_full, W_full), mode='bilinear', align_corners=False)
out = self.replace_patch(out, x, idx)
pha = out[:, :1]
fgr = out[:, 1:]
else:
pha = F.interpolate(pha, (H_full, W_full), mode='bilinear', align_corners=False)
fgr = F.interpolate(fgr, (H_full, W_full), mode='bilinear', align_corners=False)
else:
x = torch.cat([hid, pha, fgr], dim=1)
x = F.interpolate(x, (H_half, W_half), mode='bilinear', align_corners=False)
y = F.interpolate(src_bgr, (H_half, W_half), mode='bilinear', align_corners=False)
if self.kernel_size == 3:
x = F.pad(x, (3, 3, 3, 3))
y = F.pad(y, (3, 3, 3, 3))
x = self.conv1(torch.cat([x, y], dim=1))
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
if self.kernel_size == 3:
x = F.interpolate(x, (H_full + 4, W_full + 4))
y = F.pad(src_bgr, (2, 2, 2, 2))
else:
x = F.interpolate(x, (H_full, W_full), mode='nearest')
y = src_bgr
x = self.conv3(torch.cat([x, y], dim=1))
x = self.bn3(x)
x = self.relu(x)
x = self.conv4(x)
pha = x[:, :1]
fgr = x[:, 1:]
ref = torch.ones((src.size(0), 1, H_quat, W_quat), device=src.device, dtype=src.dtype)
return pha, fgr, ref
def select_refinement_regions(self, err: torch.Tensor):
"""
Select refinement regions.
Input:
err: error map (B, 1, H, W)
Output:
ref: refinement regions (B, 1, H, W). FloatTensor. 1 is selected, 0 is not.
"""
if self.mode == 'sampling':
# Sampling mode.
b, _, h, w = err.shape
err = err.view(b, -1)
idx = err.topk(self.sample_pixels // 16, dim=1, sorted=False).indices
ref = torch.zeros_like(err)
ref.scatter_(1, idx, 1.)
if self.prevent_oversampling:
ref.mul_(err.gt(0).float())
ref = ref.view(b, 1, h, w)
else:
# Thresholding mode.
ref = err.gt(self.threshold).float()
return ref
def crop_patch(self,
x: torch.Tensor,
idx: Tuple[torch.Tensor, torch.Tensor, torch.Tensor],
size: int,
padding: int):
"""
Crops selected patches from image given indices.
Inputs:
x: image (B, C, H, W).
idx: selection indices Tuple[(P,), (P,), (P,),], where the 3 values are (B, H, W) index.
size: center size of the patch, also stride of the crop.
padding: expansion size of the patch.
Output:
patch: (P, C, h, w), where h = w = size + 2 * padding.
"""
if padding != 0:
x = F.pad(x, (padding,) * 4)
if self.patch_crop_method == 'unfold':
# Use unfold. Best performance for PyTorch and TorchScript.
return x.permute(0, 2, 3, 1) \
.unfold(1, size + 2 * padding, size) \
.unfold(2, size + 2 * padding, size)[idx[0], idx[1], idx[2]]
elif self.patch_crop_method == 'roi_align':
# Use roi_align. Best compatibility for ONNX.
idx = idx[0].type_as(x), idx[1].type_as(x), idx[2].type_as(x)
b = idx[0]
x1 = idx[2] * size - 0.5
y1 = idx[1] * size - 0.5
x2 = idx[2] * size + size + 2 * padding - 0.5
y2 = idx[1] * size + size + 2 * padding - 0.5
boxes = torch.stack([b, x1, y1, x2, y2], dim=1)
return torchvision.ops.roi_align(x, boxes, size + 2 * padding, sampling_ratio=1)
else:
# Use gather. Crops out patches pixel by pixel.
idx_pix = self.compute_pixel_indices(x, idx, size, padding)
pat = torch.gather(x.view(-1), 0, idx_pix.view(-1))
pat = pat.view(-1, x.size(1), size + 2 * padding, size + 2 * padding)
return pat
def replace_patch(self,
x: torch.Tensor,
y: torch.Tensor,
idx: Tuple[torch.Tensor, torch.Tensor, torch.Tensor]):
"""
Replaces patches back into image given index.
Inputs:
x: image (B, C, H, W)
y: patches (P, C, h, w)
idx: selection indices Tuple[(P,), (P,), (P,)] where the 3 values are (B, H, W) index.
Output:
image: (B, C, H, W), where patches at idx locations are replaced with y.
"""
xB, xC, xH, xW = x.shape
yB, yC, yH, yW = y.shape
if self.patch_replace_method == 'scatter_nd':
# Use scatter_nd. Best performance for PyTorch and TorchScript. Replacing patch by patch.
x = x.view(xB, xC, xH // yH, yH, xW // yW, yW).permute(0, 2, 4, 1, 3, 5)
x[idx[0], idx[1], idx[2]] = y
x = x.permute(0, 3, 1, 4, 2, 5).view(xB, xC, xH, xW)
return x
else:
# Use scatter_element. Best compatibility for ONNX. Replacing pixel by pixel.
idx_pix = self.compute_pixel_indices(x, idx, size=4, padding=0)
return x.view(-1).scatter_(0, idx_pix.view(-1), y.view(-1)).view(x.shape)
def compute_pixel_indices(self,
x: torch.Tensor,
idx: Tuple[torch.Tensor, torch.Tensor, torch.Tensor],
size: int,
padding: int):
"""
Compute selected pixel indices in the tensor.
Used for crop_method == 'gather' and replace_method == 'scatter_element', which crop and replace pixel by pixel.
Input:
x: image: (B, C, H, W)
idx: selection indices Tuple[(P,), (P,), (P,),], where the 3 values are (B, H, W) index.
size: center size of the patch, also stride of the crop.
padding: expansion size of the patch.
Output:
idx: (P, C, O, O) long tensor where O is the output size: size + 2 * padding, P is number of patches.
the element are indices pointing to the input x.view(-1).
"""
B, C, H, W = x.shape
S, P = size, padding
O = S + 2 * P
b, y, x = idx
n = b.size(0)
c = torch.arange(C)
o = torch.arange(O)
idx_pat = (c * H * W).view(C, 1, 1).expand([C, O, O]) + (o * W).view(1, O, 1).expand([C, O, O]) + o.view(1, 1, O).expand([C, O, O])
idx_loc = b * W * H + y * W * S + x * S
idx_pix = idx_loc.view(-1, 1, 1, 1).expand([n, C, O, O]) + idx_pat.view(1, C, O, O).expand([n, C, O, O])
return idx_pix