VideoMatting / train_base.py
Fazhong Liu
init
854728f
raw
history blame
10.9 kB
"""
Train MattingBase
You can download pretrained DeepLabV3 weights from <https://github.com/VainF/DeepLabV3Plus-Pytorch>
Example:
CUDA_VISIBLE_DEVICES=0 python train_base.py \
--dataset-name videomatte240k \
--model-backbone resnet50 \
--model-name mattingbase-resnet50-videomatte240k \
--model-pretrain-initialization "pretraining/best_deeplabv3_resnet50_voc_os16.pth" \
--epoch-end 8
"""
import argparse
import kornia
import torch
import os
import random
from torch import nn
from torch.nn import functional as F
from torch.cuda.amp import autocast, GradScaler
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
from torch.optim import Adam
from torchvision.utils import make_grid
from tqdm import tqdm
from torchvision import transforms as T
from PIL import Image
from data_path import DATA_PATH
from dataset import ImagesDataset, ZipDataset, VideoDataset, SampleDataset
from dataset import augmentation as A
from model import MattingBase
from model.utils import load_matched_state_dict
# --------------- Arguments ---------------
parser = argparse.ArgumentParser()
parser.add_argument('--dataset-name', type=str, required=True, choices=DATA_PATH.keys())
parser.add_argument('--model-backbone', type=str, required=True, choices=['resnet101', 'resnet50', 'mobilenetv2'])
parser.add_argument('--model-name', type=str, required=True)
parser.add_argument('--model-pretrain-initialization', type=str, default=None)
parser.add_argument('--model-last-checkpoint', type=str, default=None)
parser.add_argument('--batch-size', type=int, default=8)
parser.add_argument('--num-workers', type=int, default=16)
parser.add_argument('--epoch-start', type=int, default=0)
parser.add_argument('--epoch-end', type=int, required=True)
parser.add_argument('--log-train-loss-interval', type=int, default=10)
parser.add_argument('--log-train-images-interval', type=int, default=2000)
parser.add_argument('--log-valid-interval', type=int, default=5000)
parser.add_argument('--checkpoint-interval', type=int, default=5000)
args = parser.parse_args()
# --------------- Loading ---------------
def train():
# Training DataLoader
dataset_train = ZipDataset([
ZipDataset([
ImagesDataset(DATA_PATH[args.dataset_name]['train']['pha'], mode='L'),
ImagesDataset(DATA_PATH[args.dataset_name]['train']['fgr'], mode='RGB'),
], transforms=A.PairCompose([
A.PairRandomAffineAndResize((512, 512), degrees=(-5, 5), translate=(0.1, 0.1), scale=(0.4, 1), shear=(-5, 5)),
A.PairRandomHorizontalFlip(),
A.PairRandomBoxBlur(0.1, 5),
A.PairRandomSharpen(0.1),
A.PairApplyOnlyAtIndices([1], T.ColorJitter(0.15, 0.15, 0.15, 0.05)),
A.PairApply(T.ToTensor())
]), assert_equal_length=True),
ImagesDataset(DATA_PATH['backgrounds']['train'], mode='RGB', transforms=T.Compose([
A.RandomAffineAndResize((512, 512), degrees=(-5, 5), translate=(0.1, 0.1), scale=(1, 2), shear=(-5, 5)),
T.RandomHorizontalFlip(),
A.RandomBoxBlur(0.1, 5),
A.RandomSharpen(0.1),
T.ColorJitter(0.15, 0.15, 0.15, 0.05),
T.ToTensor()
])),
])
dataloader_train = DataLoader(dataset_train,
shuffle=True,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=True)
# Validation DataLoader
dataset_valid = ZipDataset([
ZipDataset([
ImagesDataset(DATA_PATH[args.dataset_name]['valid']['pha'], mode='L'),
ImagesDataset(DATA_PATH[args.dataset_name]['valid']['fgr'], mode='RGB')
], transforms=A.PairCompose([
A.PairRandomAffineAndResize((512, 512), degrees=(-5, 5), translate=(0.1, 0.1), scale=(0.3, 1), shear=(-5, 5)),
A.PairApply(T.ToTensor())
]), assert_equal_length=True),
ImagesDataset(DATA_PATH['backgrounds']['valid'], mode='RGB', transforms=T.Compose([
A.RandomAffineAndResize((512, 512), degrees=(-5, 5), translate=(0.1, 0.1), scale=(1, 1.2), shear=(-5, 5)),
T.ToTensor()
])),
])
dataset_valid = SampleDataset(dataset_valid, 50)
dataloader_valid = DataLoader(dataset_valid,
pin_memory=True,
batch_size=args.batch_size,
num_workers=args.num_workers)
# Model
model = MattingBase(args.model_backbone).cuda()
if args.model_last_checkpoint is not None:
load_matched_state_dict(model, torch.load(args.model_last_checkpoint))
elif args.model_pretrain_initialization is not None:
model.load_pretrained_deeplabv3_state_dict(torch.load(args.model_pretrain_initialization)['model_state'])
optimizer = Adam([
{'params': model.backbone.parameters(), 'lr': 1e-4},
{'params': model.aspp.parameters(), 'lr': 5e-4},
{'params': model.decoder.parameters(), 'lr': 5e-4}
])
scaler = GradScaler()
# Logging and checkpoints
if not os.path.exists(f'checkpoint/{args.model_name}'):
os.makedirs(f'checkpoint/{args.model_name}')
writer = SummaryWriter(f'log/{args.model_name}')
# Run loop
for epoch in range(args.epoch_start, args.epoch_end):
for i, ((true_pha, true_fgr), true_bgr) in enumerate(tqdm(dataloader_train)):
step = epoch * len(dataloader_train) + i
true_pha = true_pha.cuda(non_blocking=True)
true_fgr = true_fgr.cuda(non_blocking=True)
true_bgr = true_bgr.cuda(non_blocking=True)
true_pha, true_fgr, true_bgr = random_crop(true_pha, true_fgr, true_bgr)
true_src = true_bgr.clone()
# Augment with shadow
aug_shadow_idx = torch.rand(len(true_src)) < 0.3
if aug_shadow_idx.any():
aug_shadow = true_pha[aug_shadow_idx].mul(0.3 * random.random())
aug_shadow = T.RandomAffine(degrees=(-5, 5), translate=(0.2, 0.2), scale=(0.5, 1.5), shear=(-5, 5))(aug_shadow)
aug_shadow = kornia.filters.box_blur(aug_shadow, (random.choice(range(20, 40)),) * 2)
true_src[aug_shadow_idx] = true_src[aug_shadow_idx].sub_(aug_shadow).clamp_(0, 1)
del aug_shadow
del aug_shadow_idx
# Composite foreground onto source
true_src = true_fgr * true_pha + true_src * (1 - true_pha)
# Augment with noise
aug_noise_idx = torch.rand(len(true_src)) < 0.4
if aug_noise_idx.any():
true_src[aug_noise_idx] = true_src[aug_noise_idx].add_(torch.randn_like(true_src[aug_noise_idx]).mul_(0.03 * random.random())).clamp_(0, 1)
true_bgr[aug_noise_idx] = true_bgr[aug_noise_idx].add_(torch.randn_like(true_bgr[aug_noise_idx]).mul_(0.03 * random.random())).clamp_(0, 1)
del aug_noise_idx
# Augment background with jitter
aug_jitter_idx = torch.rand(len(true_src)) < 0.8
if aug_jitter_idx.any():
true_bgr[aug_jitter_idx] = kornia.augmentation.ColorJitter(0.18, 0.18, 0.18, 0.1)(true_bgr[aug_jitter_idx])
del aug_jitter_idx
# Augment background with affine
aug_affine_idx = torch.rand(len(true_bgr)) < 0.3
if aug_affine_idx.any():
true_bgr[aug_affine_idx] = T.RandomAffine(degrees=(-1, 1), translate=(0.01, 0.01))(true_bgr[aug_affine_idx])
del aug_affine_idx
with autocast():
pred_pha, pred_fgr, pred_err = model(true_src, true_bgr)[:3]
loss = compute_loss(pred_pha, pred_fgr, pred_err, true_pha, true_fgr)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
if (i + 1) % args.log_train_loss_interval == 0:
writer.add_scalar('loss', loss, step)
if (i + 1) % args.log_train_images_interval == 0:
writer.add_image('train_pred_pha', make_grid(pred_pha, nrow=5), step)
writer.add_image('train_pred_fgr', make_grid(pred_fgr, nrow=5), step)
writer.add_image('train_pred_com', make_grid(pred_fgr * pred_pha, nrow=5), step)
writer.add_image('train_pred_err', make_grid(pred_err, nrow=5), step)
writer.add_image('train_true_src', make_grid(true_src, nrow=5), step)
writer.add_image('train_true_bgr', make_grid(true_bgr, nrow=5), step)
del true_pha, true_fgr, true_bgr
del pred_pha, pred_fgr, pred_err
if (i + 1) % args.log_valid_interval == 0:
valid(model, dataloader_valid, writer, step)
if (step + 1) % args.checkpoint_interval == 0:
torch.save(model.state_dict(), f'checkpoint/{args.model_name}/epoch-{epoch}-iter-{step}.pth')
torch.save(model.state_dict(), f'checkpoint/{args.model_name}/epoch-{epoch}.pth')
# --------------- Utils ---------------
def compute_loss(pred_pha, pred_fgr, pred_err, true_pha, true_fgr):
true_err = torch.abs(pred_pha.detach() - true_pha)
true_msk = true_pha != 0
return F.l1_loss(pred_pha, true_pha) + \
F.l1_loss(kornia.sobel(pred_pha), kornia.sobel(true_pha)) + \
F.l1_loss(pred_fgr * true_msk, true_fgr * true_msk) + \
F.mse_loss(pred_err, true_err)
def random_crop(*imgs):
w = random.choice(range(256, 512))
h = random.choice(range(256, 512))
results = []
for img in imgs:
img = kornia.resize(img, (max(h, w), max(h, w)))
img = kornia.center_crop(img, (h, w))
results.append(img)
return results
def valid(model, dataloader, writer, step):
model.eval()
loss_total = 0
loss_count = 0
with torch.no_grad():
for (true_pha, true_fgr), true_bgr in dataloader:
batch_size = true_pha.size(0)
true_pha = true_pha.cuda(non_blocking=True)
true_fgr = true_fgr.cuda(non_blocking=True)
true_bgr = true_bgr.cuda(non_blocking=True)
true_src = true_pha * true_fgr + (1 - true_pha) * true_bgr
pred_pha, pred_fgr, pred_err = model(true_src, true_bgr)[:3]
loss = compute_loss(pred_pha, pred_fgr, pred_err, true_pha, true_fgr)
loss_total += loss.cpu().item() * batch_size
loss_count += batch_size
writer.add_scalar('valid_loss', loss_total / loss_count, step)
model.train()
# --------------- Start ---------------
if __name__ == '__main__':
train()