VideoMatting / model /model.py
Fazhong Liu
init
854728f
raw
history blame
9.18 kB
import torch
from torch import nn
from torch.nn import functional as F
from torchvision.models.segmentation.deeplabv3 import ASPP
from .decoder import Decoder
from .mobilenet import MobileNetV2Encoder
from .refiner import Refiner
from .resnet import ResNetEncoder
from .utils import load_matched_state_dict
class Base(nn.Module):
"""
A generic implementation of the base encoder-decoder network inspired by DeepLab.
Accepts arbitrary channels for input and output.
"""
def __init__(self, backbone: str, in_channels: int, out_channels: int):
super().__init__()
assert backbone in ["resnet50", "resnet101", "mobilenetv2"]
if backbone in ['resnet50', 'resnet101']:
self.backbone = ResNetEncoder(in_channels, variant=backbone)
self.aspp = ASPP(2048, [3, 6, 9])
self.decoder = Decoder([256, 128, 64, 48, out_channels], [512, 256, 64, in_channels])
else:
self.backbone = MobileNetV2Encoder(in_channels)
self.aspp = ASPP(320, [3, 6, 9])
self.decoder = Decoder([256, 128, 64, 48, out_channels], [32, 24, 16, in_channels])
def forward(self, x):
x, *shortcuts = self.backbone(x)
x = self.aspp(x)
x = self.decoder(x, *shortcuts)
return x
def load_pretrained_deeplabv3_state_dict(self, state_dict, print_stats=True):
# Pretrained DeepLabV3 models are provided by <https://github.com/VainF/DeepLabV3Plus-Pytorch>.
# This method converts and loads their pretrained state_dict to match with our model structure.
# This method is not needed if you are not planning to train from deeplab weights.
# Use load_state_dict() for normal weight loading.
# Convert state_dict naming for aspp module
state_dict = {k.replace('classifier.classifier.0', 'aspp'): v for k, v in state_dict.items()}
if isinstance(self.backbone, ResNetEncoder):
# ResNet backbone does not need change.
load_matched_state_dict(self, state_dict, print_stats)
else:
# Change MobileNetV2 backbone to state_dict format, then change back after loading.
backbone_features = self.backbone.features
self.backbone.low_level_features = backbone_features[:4]
self.backbone.high_level_features = backbone_features[4:]
del self.backbone.features
load_matched_state_dict(self, state_dict, print_stats)
self.backbone.features = backbone_features
del self.backbone.low_level_features
del self.backbone.high_level_features
class MattingBase(Base):
"""
MattingBase is used to produce coarse global results at a lower resolution.
MattingBase extends Base.
Args:
backbone: ["resnet50", "resnet101", "mobilenetv2"]
Input:
src: (B, 3, H, W) the source image. Channels are RGB values normalized to 0 ~ 1.
bgr: (B, 3, H, W) the background image . Channels are RGB values normalized to 0 ~ 1.
Output:
pha: (B, 1, H, W) the alpha prediction. Normalized to 0 ~ 1.
fgr: (B, 3, H, W) the foreground prediction. Channels are RGB values normalized to 0 ~ 1.
err: (B, 1, H, W) the error prediction. Normalized to 0 ~ 1.
hid: (B, 32, H, W) the hidden encoding. Used for connecting refiner module.
Example:
model = MattingBase(backbone='resnet50')
pha, fgr, err, hid = model(src, bgr) # for training
pha, fgr = model(src, bgr)[:2] # for inference
"""
def __init__(self, backbone: str):
super().__init__(backbone, in_channels=6, out_channels=(1 + 3 + 1 + 32))
def forward(self, src, bgr):
x = torch.cat([src, bgr], dim=1)
x, *shortcuts = self.backbone(x)
x = self.aspp(x)
x = self.decoder(x, *shortcuts)
pha = x[:, 0:1].clamp_(0., 1.)
fgr = x[:, 1:4].add(src).clamp_(0., 1.)
err = x[:, 4:5].clamp_(0., 1.)
hid = x[:, 5: ].relu_()
return pha, fgr, err, hid
class MattingRefine(MattingBase):
"""
MattingRefine includes the refiner module to upsample coarse result to full resolution.
MattingRefine extends MattingBase.
Args:
backbone: ["resnet50", "resnet101", "mobilenetv2"]
backbone_scale: The image downsample scale for passing through backbone, default 1/4 or 0.25.
Must not be greater than 1/2.
refine_mode: refine area selection mode. Options:
"full" - No area selection, refine everywhere using regular Conv2d.
"sampling" - Refine fixed amount of pixels ranked by the top most errors.
"thresholding" - Refine varying amount of pixels that has more error than the threshold.
refine_sample_pixels: number of pixels to refine. Only used when mode == "sampling".
refine_threshold: error threshold ranged from 0 ~ 1. Refine where err > threshold. Only used when mode == "thresholding".
refine_kernel_size: the refiner's convolutional kernel size. Options: [1, 3]
refine_prevent_oversampling: prevent sampling more pixels than needed for sampling mode. Set False only for speedtest.
Input:
src: (B, 3, H, W) the source image. Channels are RGB values normalized to 0 ~ 1.
bgr: (B, 3, H, W) the background image. Channels are RGB values normalized to 0 ~ 1.
Output:
pha: (B, 1, H, W) the alpha prediction. Normalized to 0 ~ 1.
fgr: (B, 3, H, W) the foreground prediction. Channels are RGB values normalized to 0 ~ 1.
pha_sm: (B, 1, Hc, Wc) the coarse alpha prediction from matting base. Normalized to 0 ~ 1.
fgr_sm: (B, 3, Hc, Hc) the coarse foreground prediction from matting base. Normalized to 0 ~ 1.
err_sm: (B, 1, Hc, Wc) the coarse error prediction from matting base. Normalized to 0 ~ 1.
ref_sm: (B, 1, H/4, H/4) the quarter resolution refinement map. 1 indicates refined 4x4 patch locations.
Example:
model = MattingRefine(backbone='resnet50', backbone_scale=1/4, refine_mode='sampling', refine_sample_pixels=80_000)
model = MattingRefine(backbone='resnet50', backbone_scale=1/4, refine_mode='thresholding', refine_threshold=0.1)
model = MattingRefine(backbone='resnet50', backbone_scale=1/4, refine_mode='full')
pha, fgr, pha_sm, fgr_sm, err_sm, ref_sm = model(src, bgr) # for training
pha, fgr = model(src, bgr)[:2] # for inference
"""
def __init__(self,
backbone: str,
backbone_scale: float = 1/4,
refine_mode: str = 'sampling',
refine_sample_pixels: int = 80_000,
refine_threshold: float = 0.1,
refine_kernel_size: int = 3,
refine_prevent_oversampling: bool = True,
refine_patch_crop_method: str = 'unfold',
refine_patch_replace_method: str = 'scatter_nd'):
assert backbone_scale <= 1/2, 'backbone_scale should not be greater than 1/2'
super().__init__(backbone)
self.backbone_scale = backbone_scale
self.refiner = Refiner(refine_mode,
refine_sample_pixels,
refine_threshold,
refine_kernel_size,
refine_prevent_oversampling,
refine_patch_crop_method,
refine_patch_replace_method)
def forward(self, src, bgr):
assert src.size() == bgr.size(), 'src and bgr must have the same shape'
assert src.size(2) // 4 * 4 == src.size(2) and src.size(3) // 4 * 4 == src.size(3), \
'src and bgr must have width and height that are divisible by 4'
# Downsample src and bgr for backbone
src_sm = F.interpolate(src,
scale_factor=self.backbone_scale,
mode='bilinear',
align_corners=False,
recompute_scale_factor=True)
bgr_sm = F.interpolate(bgr,
scale_factor=self.backbone_scale,
mode='bilinear',
align_corners=False,
recompute_scale_factor=True)
# Base
x = torch.cat([src_sm, bgr_sm], dim=1)
x, *shortcuts = self.backbone(x)
x = self.aspp(x)
x = self.decoder(x, *shortcuts)
pha_sm = x[:, 0:1].clamp_(0., 1.)
fgr_sm = x[:, 1:4]
err_sm = x[:, 4:5].clamp_(0., 1.)
hid_sm = x[:, 5: ].relu_()
# Refiner
pha, fgr, ref_sm = self.refiner(src, bgr, pha_sm, fgr_sm, err_sm, hid_sm)
# Clamp outputs
pha = pha.clamp_(0., 1.)
fgr = fgr.add_(src).clamp_(0., 1.)
fgr_sm = src_sm.add_(fgr_sm).clamp_(0., 1.)
return pha, fgr, pha_sm, fgr_sm, err_sm, ref_sm