File size: 6,099 Bytes
598d165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import argparse
import os

import torch

import sys
sys.path.insert(0, os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "Evaluation"))
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, \
    DEFAULT_VIDEO_TOKEN
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
from serve.utils import load_image, image_ext, video_ext

from PIL import Image

import requests
from PIL import Image
from io import BytesIO
from transformers import TextStreamer



def main(args):
    # Model
    disable_torch_init()

    model_name = get_model_name_from_path(args.model_path)
    tokenizer, model, processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name,
                                                                     args.load_8bit, args.load_4bit,
                                                                     device=args.device, cache_dir=args.cache_dir)
    image_processor, video_processor = processor['image'], processor['video']
    if 'llama-2' in model_name.lower():
        conv_mode = "llava_llama_2"
    elif "v1" in model_name.lower():
        conv_mode = "llava_v1"
    elif "mpt" in model_name.lower():
        conv_mode = "mpt"
    else:
        conv_mode = "llava_v0"

    if args.conv_mode is not None and conv_mode != args.conv_mode:
        print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode))
    else:
        args.conv_mode = conv_mode

    conv = conv_templates[args.conv_mode].copy()
    if "mpt" in model_name.lower():
        roles = ('user', 'assistant')
    else:
        roles = conv.roles

    tensor = []
    special_token = []
    args.file = args.file if isinstance(args.file, list) else [args.file]
    for file in args.file:
        if os.path.splitext(file)[-1].lower() in video_ext: # video extension
            video_tensor = video_processor(file, return_tensors='pt')['pixel_values'][0].to(model.device, dtype=torch.float16)
            special_token += [DEFAULT_IMAGE_TOKEN] * model.get_video_tower().config.num_frames
        elif os.path.splitext(os.listdir(file)[0]).lower() in image_ext: # frames folder
            vidframes_list = sorted(glob(file + '/*'))
            images = load_frames(vidframes_list, model.get_video_tower().config.num_frames)
            # Similar operation in model_worker.py
            video_tensor = process_images(images, image_processor, args)
            video_tensor = video_tensor.to(model.device, dtype=torch.float16)
            video_tensor = video_tensor.unsqueeze(0)              
            special_token += [DEFAULT_IMAGE_TOKEN] * model.get_video_tower().config.num_frames
        else:
            raise ValueError(f'Support video of {video_ext} and frames of {image_ext}, but found {os.path.splitext(file)[-1].lower()}')
        print(video_tensor.shape)
        tensor.append(video_tensor)




    while True:
        try:
            inp = input(f"{roles[0]}: ")
        except EOFError:
            inp = ""
        if not inp:
            print("exit...")
            break

        print(f"{roles[1]}: ", end="")

        if file is not None:
            # first message
            if getattr(model.config, "mm_use_im_start_end", False):
                inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp
                # inp = ''.join([DEFAULT_IM_START_TOKEN + i + DEFAULT_IM_END_TOKEN for i in special_token]) + '\n' + inp
            else:
                inp = DEFAULT_IMAGE_TOKEN + '\n' + inp
                # inp = ''.join(special_token) + '\n' + inp
            conv.append_message(conv.roles[0], inp)
            file = None
        else:
            # later messages
            conv.append_message(conv.roles[0], inp)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()

        input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
        stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
        keywords = [stop_str]
        stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
        streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

        with torch.inference_mode():
            output_ids = model.generate(
                input_ids,
                images=tensor,  # video as fake images
                do_sample=True if args.temperature > 0 else False,
                temperature=args.temperature,
                max_new_tokens=args.max_new_tokens,
                streamer=streamer,
                use_cache=True,
                stopping_criteria=[stopping_criteria])

        outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
        conv.messages[-1][-1] = outputs

        if args.debug:
            print("\n", {"prompt": prompt, "outputs": outputs}, "\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model-path", type=str, default="LanguageBind/Video-LLaVA-7B")
    parser.add_argument("--model-base", type=str, default=None)
    parser.add_argument("--cache-dir", type=str, default=None)
    parser.add_argument("--file", nargs='+', type=str, required=True)
    parser.add_argument("--device", type=str, default="cuda")
    parser.add_argument("--conv-mode", type=str, default=None)
    parser.add_argument("--temperature", type=float, default=0.2)
    parser.add_argument("--max-new-tokens", type=int, default=512)
    parser.add_argument("--load-8bit", action="store_true")
    parser.add_argument("--load-4bit", action="store_true")
    parser.add_argument("--debug", action="store_true")
    args = parser.parse_args()
    main(args)