import argparse import os import torch import sys sys.path.insert(0, os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "Evaluation")) from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, \ DEFAULT_VIDEO_TOKEN from llava.conversation import conv_templates, SeparatorStyle from llava.model.builder import load_pretrained_model from llava.utils import disable_torch_init from llava.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria from serve.utils import load_image, image_ext, video_ext from PIL import Image import requests from PIL import Image from io import BytesIO from transformers import TextStreamer def main(args): # Model disable_torch_init() model_name = get_model_name_from_path(args.model_path) tokenizer, model, processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device, cache_dir=args.cache_dir) image_processor, video_processor = processor['image'], processor['video'] if 'llama-2' in model_name.lower(): conv_mode = "llava_llama_2" elif "v1" in model_name.lower(): conv_mode = "llava_v1" elif "mpt" in model_name.lower(): conv_mode = "mpt" else: conv_mode = "llava_v0" if args.conv_mode is not None and conv_mode != args.conv_mode: print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode)) else: args.conv_mode = conv_mode conv = conv_templates[args.conv_mode].copy() if "mpt" in model_name.lower(): roles = ('user', 'assistant') else: roles = conv.roles tensor = [] special_token = [] args.file = args.file if isinstance(args.file, list) else [args.file] for file in args.file: if os.path.splitext(file)[-1].lower() in video_ext: # video extension video_tensor = video_processor(file, return_tensors='pt')['pixel_values'][0].to(model.device, dtype=torch.float16) special_token += [DEFAULT_IMAGE_TOKEN] * model.get_video_tower().config.num_frames elif os.path.splitext(os.listdir(file)[0]).lower() in image_ext: # frames folder vidframes_list = sorted(glob(file + '/*')) images = load_frames(vidframes_list, model.get_video_tower().config.num_frames) # Similar operation in model_worker.py video_tensor = process_images(images, image_processor, args) video_tensor = video_tensor.to(model.device, dtype=torch.float16) video_tensor = video_tensor.unsqueeze(0) special_token += [DEFAULT_IMAGE_TOKEN] * model.get_video_tower().config.num_frames else: raise ValueError(f'Support video of {video_ext} and frames of {image_ext}, but found {os.path.splitext(file)[-1].lower()}') print(video_tensor.shape) tensor.append(video_tensor) while True: try: inp = input(f"{roles[0]}: ") except EOFError: inp = "" if not inp: print("exit...") break print(f"{roles[1]}: ", end="") if file is not None: # first message if getattr(model.config, "mm_use_im_start_end", False): inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp # inp = ''.join([DEFAULT_IM_START_TOKEN + i + DEFAULT_IM_END_TOKEN for i in special_token]) + '\n' + inp else: inp = DEFAULT_IMAGE_TOKEN + '\n' + inp # inp = ''.join(special_token) + '\n' + inp conv.append_message(conv.roles[0], inp) file = None else: # later messages conv.append_message(conv.roles[0], inp) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device) stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) with torch.inference_mode(): output_ids = model.generate( input_ids, images=tensor, # video as fake images do_sample=True if args.temperature > 0 else False, temperature=args.temperature, max_new_tokens=args.max_new_tokens, streamer=streamer, use_cache=True, stopping_criteria=[stopping_criteria]) outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip() conv.messages[-1][-1] = outputs if args.debug: print("\n", {"prompt": prompt, "outputs": outputs}, "\n") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model-path", type=str, default="LanguageBind/Video-LLaVA-7B") parser.add_argument("--model-base", type=str, default=None) parser.add_argument("--cache-dir", type=str, default=None) parser.add_argument("--file", nargs='+', type=str, required=True) parser.add_argument("--device", type=str, default="cuda") parser.add_argument("--conv-mode", type=str, default=None) parser.add_argument("--temperature", type=float, default=0.2) parser.add_argument("--max-new-tokens", type=int, default=512) parser.add_argument("--load-8bit", action="store_true") parser.add_argument("--load-4bit", action="store_true") parser.add_argument("--debug", action="store_true") args = parser.parse_args() main(args)