from PIL import Image from io import BytesIO import base64 import torch from transformers import StoppingCriteria from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN from llava.conversation import conv_templates, SeparatorStyle from transformers import TextStreamer from os.path import join def load_image_from_base64(image): return Image.open(BytesIO(base64.b64decode(image))) def load_image(image_file): if image_file.startswith('http://') or image_file.startswith('https://'): response = requests.get(image_file) image = Image.open(BytesIO(response.content)).convert('RGB') else: image = Image.open(image_file).convert('RGB') return image def expand2square(pil_img, background_color): width, height = pil_img.size if width == height: return pil_img elif width > height: result = Image.new(pil_img.mode, (width, width), background_color) result.paste(pil_img, (0, (width - height) // 2)) return result else: result = Image.new(pil_img.mode, (height, height), background_color) result.paste(pil_img, ((height - width) // 2, 0)) return result def process_images(images, image_processor, model_cfg): image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None) new_images = [] if image_aspect_ratio == 'pad': for image in images: image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean)) image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] new_images.append(image) else: return image_processor(images, return_tensors='pt')['pixel_values'] if all(x.shape == new_images[0].shape for x in new_images): new_images = torch.stack(new_images, dim=0) return new_images def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None): prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('')] def insert_separator(X, sep): return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1] input_ids = [] offset = 0 if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: offset = 1 input_ids.append(prompt_chunks[0][0]) for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): input_ids.extend(x[offset:]) if return_tensors is not None: if return_tensors == 'pt': return torch.tensor(input_ids, dtype=torch.long) raise ValueError(f'Unsupported tensor type: {return_tensors}') return input_ids def get_model_name_from_path(model_path): model_path = model_path.strip("/") model_paths = model_path.split("/") if model_paths[-1].startswith('checkpoint-'): return model_paths[-2] + "_" + model_paths[-1] else: return model_paths[-1] from PIL import Image from io import BytesIO import base64 import torch from transformers import StoppingCriteria from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN from llava.conversation import conv_templates, SeparatorStyle from transformers import TextStreamer from os.path import join def load_image_from_base64(image): return Image.open(BytesIO(base64.b64decode(image))) def load_image(image_file): if image_file.startswith('http://') or image_file.startswith('https://'): response = requests.get(image_file) image = Image.open(BytesIO(response.content)).convert('RGB') else: image = Image.open(image_file).convert('RGB') return image def expand2square(pil_img, background_color): width, height = pil_img.size if width == height: return pil_img elif width > height: result = Image.new(pil_img.mode, (width, width), background_color) result.paste(pil_img, (0, (width - height) // 2)) return result else: result = Image.new(pil_img.mode, (height, height), background_color) result.paste(pil_img, ((height - width) // 2, 0)) return result def process_images(images, image_processor, model_cfg): image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None) new_images = [] if image_aspect_ratio == 'pad': for image in images: image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean)) image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] new_images.append(image) else: return image_processor(images, return_tensors='pt')['pixel_values'] if all(x.shape == new_images[0].shape for x in new_images): new_images = torch.stack(new_images, dim=0) return new_images def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None): prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('')] def insert_separator(X, sep): return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1] input_ids = [] offset = 0 if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: offset = 1 input_ids.append(prompt_chunks[0][0]) for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): input_ids.extend(x[offset:]) if return_tensors is not None: if return_tensors == 'pt': return torch.tensor(input_ids, dtype=torch.long) raise ValueError(f'Unsupported tensor type: {return_tensors}') return input_ids def get_model_name_from_path(model_path): model_path = model_path.strip("/") model_paths = model_path.split("/") if model_paths[-1].startswith('checkpoint-'): return model_paths[-2] + "_" + model_paths[-1] else: return model_paths[-1] def get_independent_context_n_captions(vidframes_path_list, model, image_processor, tokenizer, args, num_captions=3, cond='', agg_type='concat'): vidframes_path_list = vidframes_path_list[1:-1] num_captions = int(num_captions) if num_captions == 1: img_files = [vidframes_path_list[randint(0, len(vidframes_path_list)-1)]] elif num_captions >= len(vidframes_path_list): img_files = vidframes_path_list else: L = len(vidframes_path_list) if num_captions <= 0 or num_captions > L: return "Invalid value of n. Please provide a valid number." max_gap = (L - 1) // (num_captions - 1) # Calculate the maximum gap between indices img_files = [vidframes_path_list[i * max_gap] for i in range(num_captions)] outputs = [] # for idx, fname in enumerate([first_img_file, last_img_file]): for idx, fname in enumerate(img_files): # image load image = load_image(fname) # Similar operation in model_worker.py image_tensor = process_images([image], image_processor, args) image_tensor = image_tensor.to(model.device, dtype=torch.float16) conv = conv_templates[args.conv_mode].copy() tmp_query = 'Considering the following question, \'' + cond + '\', describe this image concisely and shortly.' question = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + tmp_query conv.append_message(conv.roles[0], question) image = None conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) with torch.inference_mode(): output_ids = model.generate( input_ids, images=image_tensor, do_sample=True, temperature=args.temperature, max_new_tokens=args.max_new_tokens, streamer=streamer, use_cache=True, stopping_criteria=[stopping_criteria]) output = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip() outputs.append(output) outputs = ' '.join(outputs) outputs = outputs.replace('', '') if agg_type == 'summ': conv = conv_templates[args.conv_mode].copy() tmp_query = 'Summarize the following sentences, ' + outputs question = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + tmp_query conv.append_message(conv.roles[0], question) image = None conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) with torch.inference_mode(): output_ids = model.generate( input_ids, images=image_tensor, do_sample=True, temperature=args.temperature, max_new_tokens=args.max_new_tokens, streamer=streamer, use_cache=True, stopping_criteria=[stopping_criteria]) outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip() # outputs.append(output) outputs = outputs.replace('', '') return outputs def get_independent_context_captions(vidframes_path_list, model, image_processor, tokenizer, args, num_captions=3, cond='', agg_type='concat'): first_img_file = vidframes_path_list[1] tmp_frm_idx = max(0, int(len(vidframes_path_list)/2)) tmp_frm_idx = min(len(vidframes_path_list)-1, int(len(vidframes_path_list)/2)) center_img_file = vidframes_path_list[tmp_frm_idx] last_img_file = vidframes_path_list[-2] outputs = [] for idx, fname in enumerate([first_img_file, center_img_file, last_img_file]): # image load image = load_image(fname) # Similar operation in model_worker.py image_tensor = process_images([image], image_processor, args) image_tensor = image_tensor.to(model.device, dtype=torch.float16) conv = conv_templates[args.conv_mode].copy() tmp_query = 'Considering the following question, \'' + cond + '\', describe this image concisely and shortly.' question = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + tmp_query conv.append_message(conv.roles[0], question) image = None conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) with torch.inference_mode(): output_ids = model.generate( input_ids, images=image_tensor, do_sample=True, temperature=args.temperature, max_new_tokens=args.max_new_tokens, streamer=streamer, use_cache=True, stopping_criteria=[stopping_criteria]) output = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip() outputs.append(output) outputs = ' '.join(outputs) outputs = outputs.replace('', '') if agg_type == 'summ': conv = conv_templates[args.conv_mode].copy() tmp_query = 'Summarize the following sentences, ' + outputs question = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + tmp_query conv.append_message(conv.roles[0], question) image = None conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) with torch.inference_mode(): output_ids = model.generate( input_ids, images=image_tensor, do_sample=True, temperature=args.temperature, max_new_tokens=args.max_new_tokens, streamer=streamer, use_cache=True, stopping_criteria=[stopping_criteria]) outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip() # outputs.append(output) outputs = outputs.replace('', '') return outputs def get_dependent_context_captions(vidframes_path_list, model, image_processor, tokenizer, args, num_captions=3, cond='', agg_type='concat'): first_img_file = vidframes_path_list[1] tmp_frm_idx = max(0, int(len(vidframes_path_list)/2)) tmp_frm_idx = min(len(vidframes_path_list)-1, int(len(vidframes_path_list)/2)) center_img_file = vidframes_path_list[tmp_frm_idx] last_img_file = vidframes_path_list[-2] outputs = [] for idx, fname in enumerate([first_img_file, center_img_file, last_img_file]): # image load image = load_image(fname) # Similar operation in model_worker.py image_tensor = process_images([image], image_processor, args) image_tensor = image_tensor.to(model.device, dtype=torch.float16) conv = conv_templates[args.conv_mode].copy() if idx == 0: tmp_query = 'Considering the following question, \'' + cond + '\', describe this image concisely and shortly.' else: tmp_query = 'Considering the following question and sentences\'' + cond + ' and ' + output + '\', describe this image concisely and shortly.' tmp_query = tmp_query.replace('', '') question = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + tmp_query conv.append_message(conv.roles[0], question) image = None conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) with torch.inference_mode(): output_ids = model.generate( input_ids, images=image_tensor, do_sample=True, temperature=args.temperature, max_new_tokens=args.max_new_tokens, streamer=streamer, use_cache=True, stopping_criteria=[stopping_criteria]) output = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip() output.replace('', '') outputs.append(output) outputs = ' '.join(outputs) outputs = outputs.replace('', '') if agg_type == 'summ': conv = conv_templates[args.conv_mode].copy() tmp_query = 'Summarize the following sentences, ' + outputs # question = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + tmp_query conv.append_message(conv.roles[0], tmp_query) image = None conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) with torch.inference_mode(): output_ids = model.generate( input_ids, do_sample=True, temperature=args.temperature, max_new_tokens=args.max_new_tokens, streamer=streamer, use_cache=True, stopping_criteria=[stopping_criteria]) outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip() # outputs.append(output) outputs = outputs.replace('', '') return outputs def get_dependent_context_n_captions(vidframes_path_list, model, image_processor, tokenizer, args, num_captions=3, cond='', agg_type='concat'): vidframes_path_list = vidframes_path_list[1:-1] num_captions = int(num_captions) if num_captions == 1: img_files = [vidframes_path_list[randint(0, len(vidframes_path_list)-1)]] elif num_captions >= len(vidframes_path_list): img_files = vidframes_path_list else: L = len(vidframes_path_list) if num_captions <= 0 or num_captions > L: return "Invalid value of n. Please provide a valid number." max_gap = (L - 1) // (num_captions - 1) # Calculate the maximum gap between indices img_files = [vidframes_path_list[i * max_gap] for i in range(num_captions)] # first_img_file = vidframes_path_list[1] # tmp_frm_idx = max(0, int(len(vidframes_path_list)/2)) # tmp_frm_idx = min(len(vidframes_path_list)-1, int(len(vidframes_path_list)/2)) # center_img_file = vidframes_path_list[tmp_frm_idx] # last_img_file = vidframes_path_list[-2] outputs = [] for idx, fname in enumerate([first_img_file, center_img_file, last_img_file]): # image load image = load_image(fname) # Similar operation in model_worker.py image_tensor = process_images([image], image_processor, args) image_tensor = image_tensor.to(model.device, dtype=torch.float16) conv = conv_templates[args.conv_mode].copy() if idx == 0: tmp_query = 'Considering the following question, \'' + cond + '\', describe this image concisely and shortly.' else: tmp_query = 'Considering the following question and sentences\'' + cond + ' and ' + output + '\', describe this image concisely and shortly.' tmp_query = tmp_query.replace('', '') question = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + tmp_query conv.append_message(conv.roles[0], question) image = None conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) with torch.inference_mode(): output_ids = model.generate( input_ids, images=image_tensor, do_sample=True, temperature=args.temperature, max_new_tokens=args.max_new_tokens, streamer=streamer, use_cache=True, stopping_criteria=[stopping_criteria]) output = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip() output.replace('', '') outputs.append(output) outputs = ' '.join(outputs) outputs = outputs.replace('', '') if agg_type == 'summ': conv = conv_templates[args.conv_mode].copy() tmp_query = 'Summarize the following sentences, ' + outputs # question = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + tmp_query conv.append_message(conv.roles[0], tmp_query) image = None conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) with torch.inference_mode(): output_ids = model.generate( input_ids, do_sample=True, temperature=args.temperature, max_new_tokens=args.max_new_tokens, streamer=streamer, use_cache=True, stopping_criteria=[stopping_criteria]) outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip() # outputs.append(output) outputs = outputs.replace('', '') return outputs class KeywordsStoppingCriteria(StoppingCriteria): def __init__(self, keywords, tokenizer, input_ids): self.keywords = keywords self.keyword_ids = [] self.max_keyword_len = 0 for keyword in keywords: cur_keyword_ids = tokenizer(keyword).input_ids if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id: cur_keyword_ids = cur_keyword_ids[1:] if len(cur_keyword_ids) > self.max_keyword_len: self.max_keyword_len = len(cur_keyword_ids) self.keyword_ids.append(torch.tensor(cur_keyword_ids)) self.tokenizer = tokenizer self.start_len = input_ids.shape[1] def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" # TODO offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len) self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids] for keyword_id in self.keyword_ids: if (output_ids[0, -keyword_id.shape[0]:] == keyword_id).all(): return True outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0] for keyword in self.keywords: if keyword in outputs: return True return False