Spaces:
Saad0KH
/
Running on Zero

File size: 20,746 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
// Copyright (c) Facebook, Inc. and its affiliates.
#include "cocoeval.h"
#include <time.h>
#include <algorithm>
#include <cstdint>
#include <numeric>

using namespace pybind11::literals;

namespace detectron2 {

namespace COCOeval {

// Sort detections from highest score to lowest, such that
// detection_instances[detection_sorted_indices[t]] >=
// detection_instances[detection_sorted_indices[t+1]].  Use stable_sort to match
// original COCO API
void SortInstancesByDetectionScore(
    const std::vector<InstanceAnnotation>& detection_instances,
    std::vector<uint64_t>* detection_sorted_indices) {
  detection_sorted_indices->resize(detection_instances.size());
  std::iota(
      detection_sorted_indices->begin(), detection_sorted_indices->end(), 0);
  std::stable_sort(
      detection_sorted_indices->begin(),
      detection_sorted_indices->end(),
      [&detection_instances](size_t j1, size_t j2) {
        return detection_instances[j1].score > detection_instances[j2].score;
      });
}

// Partition the ground truth objects based on whether or not to ignore them
// based on area
void SortInstancesByIgnore(
    const std::array<double, 2>& area_range,
    const std::vector<InstanceAnnotation>& ground_truth_instances,
    std::vector<uint64_t>* ground_truth_sorted_indices,
    std::vector<bool>* ignores) {
  ignores->clear();
  ignores->reserve(ground_truth_instances.size());
  for (auto o : ground_truth_instances) {
    ignores->push_back(
        o.ignore || o.area < area_range[0] || o.area > area_range[1]);
  }

  ground_truth_sorted_indices->resize(ground_truth_instances.size());
  std::iota(
      ground_truth_sorted_indices->begin(),
      ground_truth_sorted_indices->end(),
      0);
  std::stable_sort(
      ground_truth_sorted_indices->begin(),
      ground_truth_sorted_indices->end(),
      [&ignores](size_t j1, size_t j2) {
        return (int)(*ignores)[j1] < (int)(*ignores)[j2];
      });
}

// For each IOU threshold, greedily match each detected instance to a ground
// truth instance (if possible) and store the results
void MatchDetectionsToGroundTruth(
    const std::vector<InstanceAnnotation>& detection_instances,
    const std::vector<uint64_t>& detection_sorted_indices,
    const std::vector<InstanceAnnotation>& ground_truth_instances,
    const std::vector<uint64_t>& ground_truth_sorted_indices,
    const std::vector<bool>& ignores,
    const std::vector<std::vector<double>>& ious,
    const std::vector<double>& iou_thresholds,
    const std::array<double, 2>& area_range,
    ImageEvaluation* results) {
  // Initialize memory to store return data matches and ignore
  const int num_iou_thresholds = iou_thresholds.size();
  const int num_ground_truth = ground_truth_sorted_indices.size();
  const int num_detections = detection_sorted_indices.size();
  std::vector<uint64_t> ground_truth_matches(
      num_iou_thresholds * num_ground_truth, 0);
  std::vector<uint64_t>& detection_matches = results->detection_matches;
  std::vector<bool>& detection_ignores = results->detection_ignores;
  std::vector<bool>& ground_truth_ignores = results->ground_truth_ignores;
  detection_matches.resize(num_iou_thresholds * num_detections, 0);
  detection_ignores.resize(num_iou_thresholds * num_detections, false);
  ground_truth_ignores.resize(num_ground_truth);
  for (auto g = 0; g < num_ground_truth; ++g) {
    ground_truth_ignores[g] = ignores[ground_truth_sorted_indices[g]];
  }

  for (auto t = 0; t < num_iou_thresholds; ++t) {
    for (auto d = 0; d < num_detections; ++d) {
      // information about best match so far (match=-1 -> unmatched)
      double best_iou = std::min(iou_thresholds[t], 1 - 1e-10);
      int match = -1;
      for (auto g = 0; g < num_ground_truth; ++g) {
        // if this ground truth instance is already matched and not a
        // crowd, it cannot be matched to another detection
        if (ground_truth_matches[t * num_ground_truth + g] > 0 &&
            !ground_truth_instances[ground_truth_sorted_indices[g]].is_crowd) {
          continue;
        }

        // if detected instance matched to a regular ground truth
        // instance, we can break on the first ground truth instance
        // tagged as ignore (because they are sorted by the ignore tag)
        if (match >= 0 && !ground_truth_ignores[match] &&
            ground_truth_ignores[g]) {
          break;
        }

        // if IOU overlap is the best so far, store the match appropriately
        if (ious[d][ground_truth_sorted_indices[g]] >= best_iou) {
          best_iou = ious[d][ground_truth_sorted_indices[g]];
          match = g;
        }
      }
      // if match was made, store id of match for both detection and
      // ground truth
      if (match >= 0) {
        detection_ignores[t * num_detections + d] = ground_truth_ignores[match];
        detection_matches[t * num_detections + d] =
            ground_truth_instances[ground_truth_sorted_indices[match]].id;
        ground_truth_matches[t * num_ground_truth + match] =
            detection_instances[detection_sorted_indices[d]].id;
      }

      // set unmatched detections outside of area range to ignore
      const InstanceAnnotation& detection =
          detection_instances[detection_sorted_indices[d]];
      detection_ignores[t * num_detections + d] =
          detection_ignores[t * num_detections + d] ||
          (detection_matches[t * num_detections + d] == 0 &&
           (detection.area < area_range[0] || detection.area > area_range[1]));
    }
  }

  // store detection score results
  results->detection_scores.resize(detection_sorted_indices.size());
  for (size_t d = 0; d < detection_sorted_indices.size(); ++d) {
    results->detection_scores[d] =
        detection_instances[detection_sorted_indices[d]].score;
  }
}

std::vector<ImageEvaluation> EvaluateImages(
    const std::vector<std::array<double, 2>>& area_ranges,
    int max_detections,
    const std::vector<double>& iou_thresholds,
    const ImageCategoryInstances<std::vector<double>>& image_category_ious,
    const ImageCategoryInstances<InstanceAnnotation>&
        image_category_ground_truth_instances,
    const ImageCategoryInstances<InstanceAnnotation>&
        image_category_detection_instances) {
  const int num_area_ranges = area_ranges.size();
  const int num_images = image_category_ground_truth_instances.size();
  const int num_categories =
      image_category_ious.size() > 0 ? image_category_ious[0].size() : 0;
  std::vector<uint64_t> detection_sorted_indices;
  std::vector<uint64_t> ground_truth_sorted_indices;
  std::vector<bool> ignores;
  std::vector<ImageEvaluation> results_all(
      num_images * num_area_ranges * num_categories);

  // Store results for each image, category, and area range combination. Results
  // for each IOU threshold are packed into the same ImageEvaluation object
  for (auto i = 0; i < num_images; ++i) {
    for (auto c = 0; c < num_categories; ++c) {
      const std::vector<InstanceAnnotation>& ground_truth_instances =
          image_category_ground_truth_instances[i][c];
      const std::vector<InstanceAnnotation>& detection_instances =
          image_category_detection_instances[i][c];

      SortInstancesByDetectionScore(
          detection_instances, &detection_sorted_indices);
      if ((int)detection_sorted_indices.size() > max_detections) {
        detection_sorted_indices.resize(max_detections);
      }

      for (size_t a = 0; a < area_ranges.size(); ++a) {
        SortInstancesByIgnore(
            area_ranges[a],
            ground_truth_instances,
            &ground_truth_sorted_indices,
            &ignores);

        MatchDetectionsToGroundTruth(
            detection_instances,
            detection_sorted_indices,
            ground_truth_instances,
            ground_truth_sorted_indices,
            ignores,
            image_category_ious[i][c],
            iou_thresholds,
            area_ranges[a],
            &results_all
                [c * num_area_ranges * num_images + a * num_images + i]);
      }
    }
  }

  return results_all;
}

// Convert a python list to a vector
template <typename T>
std::vector<T> list_to_vec(const py::list& l) {
  std::vector<T> v(py::len(l));
  for (int i = 0; i < (int)py::len(l); ++i) {
    v[i] = l[i].cast<T>();
  }
  return v;
}

// Helper function to Accumulate()
// Considers the evaluation results applicable to a particular category, area
// range, and max_detections parameter setting, which begin at
// evaluations[evaluation_index].  Extracts a sorted list of length n of all
// applicable detection instances concatenated across all images in the dataset,
// which are represented by the outputs evaluation_indices, detection_scores,
// image_detection_indices, and detection_sorted_indices--all of which are
// length n. evaluation_indices[i] stores the applicable index into
// evaluations[] for instance i, which has detection score detection_score[i],
// and is the image_detection_indices[i]'th of the list of detections
// for the image containing i.  detection_sorted_indices[] defines a sorted
// permutation of the 3 other outputs
int BuildSortedDetectionList(
    const std::vector<ImageEvaluation>& evaluations,
    const int64_t evaluation_index,
    const int64_t num_images,
    const int max_detections,
    std::vector<uint64_t>* evaluation_indices,
    std::vector<double>* detection_scores,
    std::vector<uint64_t>* detection_sorted_indices,
    std::vector<uint64_t>* image_detection_indices) {
  assert(evaluations.size() >= evaluation_index + num_images);

  // Extract a list of object instances of the applicable category, area
  // range, and max detections requirements such that they can be sorted
  image_detection_indices->clear();
  evaluation_indices->clear();
  detection_scores->clear();
  image_detection_indices->reserve(num_images * max_detections);
  evaluation_indices->reserve(num_images * max_detections);
  detection_scores->reserve(num_images * max_detections);
  int num_valid_ground_truth = 0;
  for (auto i = 0; i < num_images; ++i) {
    const ImageEvaluation& evaluation = evaluations[evaluation_index + i];

    for (int d = 0;
         d < (int)evaluation.detection_scores.size() && d < max_detections;
         ++d) { // detected instances
      evaluation_indices->push_back(evaluation_index + i);
      image_detection_indices->push_back(d);
      detection_scores->push_back(evaluation.detection_scores[d]);
    }
    for (auto ground_truth_ignore : evaluation.ground_truth_ignores) {
      if (!ground_truth_ignore) {
        ++num_valid_ground_truth;
      }
    }
  }

  // Sort detections by decreasing score, using stable sort to match
  // python implementation
  detection_sorted_indices->resize(detection_scores->size());
  std::iota(
      detection_sorted_indices->begin(), detection_sorted_indices->end(), 0);
  std::stable_sort(
      detection_sorted_indices->begin(),
      detection_sorted_indices->end(),
      [&detection_scores](size_t j1, size_t j2) {
        return (*detection_scores)[j1] > (*detection_scores)[j2];
      });

  return num_valid_ground_truth;
}

// Helper function to Accumulate()
// Compute a precision recall curve given a sorted list of detected instances
// encoded in evaluations, evaluation_indices, detection_scores,
// detection_sorted_indices, image_detection_indices (see
// BuildSortedDetectionList()). Using vectors precisions and recalls
// and temporary storage, output the results into precisions_out, recalls_out,
// and scores_out, which are large buffers containing many precion/recall curves
// for all possible parameter settings, with precisions_out_index and
// recalls_out_index defining the applicable indices to store results.
void ComputePrecisionRecallCurve(
    const int64_t precisions_out_index,
    const int64_t precisions_out_stride,
    const int64_t recalls_out_index,
    const std::vector<double>& recall_thresholds,
    const int iou_threshold_index,
    const int num_iou_thresholds,
    const int num_valid_ground_truth,
    const std::vector<ImageEvaluation>& evaluations,
    const std::vector<uint64_t>& evaluation_indices,
    const std::vector<double>& detection_scores,
    const std::vector<uint64_t>& detection_sorted_indices,
    const std::vector<uint64_t>& image_detection_indices,
    std::vector<double>* precisions,
    std::vector<double>* recalls,
    std::vector<double>* precisions_out,
    std::vector<double>* scores_out,
    std::vector<double>* recalls_out) {
  assert(recalls_out->size() > recalls_out_index);

  // Compute precision/recall for each instance in the sorted list of detections
  int64_t true_positives_sum = 0, false_positives_sum = 0;
  precisions->clear();
  recalls->clear();
  precisions->reserve(detection_sorted_indices.size());
  recalls->reserve(detection_sorted_indices.size());
  assert(!evaluations.empty() || detection_sorted_indices.empty());
  for (auto detection_sorted_index : detection_sorted_indices) {
    const ImageEvaluation& evaluation =
        evaluations[evaluation_indices[detection_sorted_index]];
    const auto num_detections =
        evaluation.detection_matches.size() / num_iou_thresholds;
    const auto detection_index = iou_threshold_index * num_detections +
        image_detection_indices[detection_sorted_index];
    assert(evaluation.detection_matches.size() > detection_index);
    assert(evaluation.detection_ignores.size() > detection_index);
    const int64_t detection_match =
        evaluation.detection_matches[detection_index];
    const bool detection_ignores =
        evaluation.detection_ignores[detection_index];
    const auto true_positive = detection_match > 0 && !detection_ignores;
    const auto false_positive = detection_match == 0 && !detection_ignores;
    if (true_positive) {
      ++true_positives_sum;
    }
    if (false_positive) {
      ++false_positives_sum;
    }

    const double recall =
        static_cast<double>(true_positives_sum) / num_valid_ground_truth;
    recalls->push_back(recall);
    const int64_t num_valid_detections =
        true_positives_sum + false_positives_sum;
    const double precision = num_valid_detections > 0
        ? static_cast<double>(true_positives_sum) / num_valid_detections
        : 0.0;
    precisions->push_back(precision);
  }

  (*recalls_out)[recalls_out_index] = !recalls->empty() ? recalls->back() : 0;

  for (int64_t i = static_cast<int64_t>(precisions->size()) - 1; i > 0; --i) {
    if ((*precisions)[i] > (*precisions)[i - 1]) {
      (*precisions)[i - 1] = (*precisions)[i];
    }
  }

  // Sample the per instance precision/recall list at each recall threshold
  for (size_t r = 0; r < recall_thresholds.size(); ++r) {
    // first index in recalls >= recall_thresholds[r]
    std::vector<double>::iterator low = std::lower_bound(
        recalls->begin(), recalls->end(), recall_thresholds[r]);
    size_t precisions_index = low - recalls->begin();

    const auto results_ind = precisions_out_index + r * precisions_out_stride;
    assert(results_ind < precisions_out->size());
    assert(results_ind < scores_out->size());
    if (precisions_index < precisions->size()) {
      (*precisions_out)[results_ind] = (*precisions)[precisions_index];
      (*scores_out)[results_ind] =
          detection_scores[detection_sorted_indices[precisions_index]];
    } else {
      (*precisions_out)[results_ind] = 0;
      (*scores_out)[results_ind] = 0;
    }
  }
}
py::dict Accumulate(
    const py::object& params,
    const std::vector<ImageEvaluation>& evaluations) {
  const std::vector<double> recall_thresholds =
      list_to_vec<double>(params.attr("recThrs"));
  const std::vector<int> max_detections =
      list_to_vec<int>(params.attr("maxDets"));
  const int num_iou_thresholds = py::len(params.attr("iouThrs"));
  const int num_recall_thresholds = py::len(params.attr("recThrs"));
  const int num_categories = params.attr("useCats").cast<int>() == 1
      ? py::len(params.attr("catIds"))
      : 1;
  const int num_area_ranges = py::len(params.attr("areaRng"));
  const int num_max_detections = py::len(params.attr("maxDets"));
  const int num_images = py::len(params.attr("imgIds"));

  std::vector<double> precisions_out(
      num_iou_thresholds * num_recall_thresholds * num_categories *
          num_area_ranges * num_max_detections,
      -1);
  std::vector<double> recalls_out(
      num_iou_thresholds * num_categories * num_area_ranges *
          num_max_detections,
      -1);
  std::vector<double> scores_out(
      num_iou_thresholds * num_recall_thresholds * num_categories *
          num_area_ranges * num_max_detections,
      -1);

  // Consider the list of all detected instances in the entire dataset in one
  // large list.  evaluation_indices, detection_scores,
  // image_detection_indices, and detection_sorted_indices all have the same
  // length as this list, such that each entry corresponds to one detected
  // instance
  std::vector<uint64_t> evaluation_indices; // indices into evaluations[]
  std::vector<double> detection_scores; // detection scores of each instance
  std::vector<uint64_t> detection_sorted_indices; // sorted indices of all
                                                  // instances in the dataset
  std::vector<uint64_t>
      image_detection_indices; // indices into the list of detected instances in
                               // the same image as each instance
  std::vector<double> precisions, recalls;

  for (auto c = 0; c < num_categories; ++c) {
    for (auto a = 0; a < num_area_ranges; ++a) {
      for (auto m = 0; m < num_max_detections; ++m) {
        // The COCO PythonAPI assumes evaluations[] (the return value of
        // COCOeval::EvaluateImages() is one long list storing results for each
        // combination of category, area range, and image id, with categories in
        // the outermost loop and images in the innermost loop.
        const int64_t evaluations_index =
            c * num_area_ranges * num_images + a * num_images;
        int num_valid_ground_truth = BuildSortedDetectionList(
            evaluations,
            evaluations_index,
            num_images,
            max_detections[m],
            &evaluation_indices,
            &detection_scores,
            &detection_sorted_indices,
            &image_detection_indices);

        if (num_valid_ground_truth == 0) {
          continue;
        }

        for (auto t = 0; t < num_iou_thresholds; ++t) {
          // recalls_out is a flattened vectors representing a
          // num_iou_thresholds X num_categories X num_area_ranges X
          // num_max_detections matrix
          const int64_t recalls_out_index =
              t * num_categories * num_area_ranges * num_max_detections +
              c * num_area_ranges * num_max_detections +
              a * num_max_detections + m;

          // precisions_out and scores_out are flattened vectors
          // representing a num_iou_thresholds X num_recall_thresholds X
          // num_categories X num_area_ranges X num_max_detections matrix
          const int64_t precisions_out_stride =
              num_categories * num_area_ranges * num_max_detections;
          const int64_t precisions_out_index = t * num_recall_thresholds *
                  num_categories * num_area_ranges * num_max_detections +
              c * num_area_ranges * num_max_detections +
              a * num_max_detections + m;

          ComputePrecisionRecallCurve(
              precisions_out_index,
              precisions_out_stride,
              recalls_out_index,
              recall_thresholds,
              t,
              num_iou_thresholds,
              num_valid_ground_truth,
              evaluations,
              evaluation_indices,
              detection_scores,
              detection_sorted_indices,
              image_detection_indices,
              &precisions,
              &recalls,
              &precisions_out,
              &scores_out,
              &recalls_out);
        }
      }
    }
  }

  time_t rawtime;
  struct tm local_time;
  std::array<char, 200> buffer;
  time(&rawtime);
#ifdef _WIN32
  localtime_s(&local_time, &rawtime);
#else
  localtime_r(&rawtime, &local_time);
#endif
  strftime(
      buffer.data(), 200, "%Y-%m-%d %H:%num_max_detections:%S", &local_time);
  return py::dict(
      "params"_a = params,
      "counts"_a = std::vector<int64_t>(
          {num_iou_thresholds,
           num_recall_thresholds,
           num_categories,
           num_area_ranges,
           num_max_detections}),
      "date"_a = buffer,
      "precision"_a = precisions_out,
      "recall"_a = recalls_out,
      "scores"_a = scores_out);
}

} // namespace COCOeval

} // namespace detectron2