Spaces:
Saad0KH
/
Running on Zero

File size: 7,015 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.

import copy
import logging
from typing import Any, Dict, List, Tuple
import torch

from detectron2.data import MetadataCatalog
from detectron2.data import detection_utils as utils
from detectron2.data import transforms as T
from detectron2.layers import ROIAlign
from detectron2.structures import BoxMode
from detectron2.utils.file_io import PathManager

from densepose.structures import DensePoseDataRelative, DensePoseList, DensePoseTransformData


def build_augmentation(cfg, is_train):
    logger = logging.getLogger(__name__)
    result = utils.build_augmentation(cfg, is_train)
    if is_train:
        random_rotation = T.RandomRotation(
            cfg.INPUT.ROTATION_ANGLES, expand=False, sample_style="choice"
        )
        result.append(random_rotation)
        logger.info("DensePose-specific augmentation used in training: " + str(random_rotation))
    return result


class DatasetMapper:
    """
    A customized version of `detectron2.data.DatasetMapper`
    """

    def __init__(self, cfg, is_train=True):
        self.augmentation = build_augmentation(cfg, is_train)

        # fmt: off
        self.img_format     = cfg.INPUT.FORMAT
        self.mask_on        = (
            cfg.MODEL.MASK_ON or (
                cfg.MODEL.DENSEPOSE_ON
                and cfg.MODEL.ROI_DENSEPOSE_HEAD.COARSE_SEGM_TRAINED_BY_MASKS)
        )
        self.keypoint_on    = cfg.MODEL.KEYPOINT_ON
        self.densepose_on   = cfg.MODEL.DENSEPOSE_ON
        assert not cfg.MODEL.LOAD_PROPOSALS, "not supported yet"
        # fmt: on
        if self.keypoint_on and is_train:
            # Flip only makes sense in training
            self.keypoint_hflip_indices = utils.create_keypoint_hflip_indices(cfg.DATASETS.TRAIN)
        else:
            self.keypoint_hflip_indices = None

        if self.densepose_on:
            densepose_transform_srcs = [
                MetadataCatalog.get(ds).densepose_transform_src
                for ds in cfg.DATASETS.TRAIN + cfg.DATASETS.TEST
            ]
            assert len(densepose_transform_srcs) > 0
            # TODO: check that DensePose transformation data is the same for
            # all the datasets. Otherwise one would have to pass DB ID with
            # each entry to select proper transformation data. For now, since
            # all DensePose annotated data uses the same data semantics, we
            # omit this check.
            densepose_transform_data_fpath = PathManager.get_local_path(densepose_transform_srcs[0])
            self.densepose_transform_data = DensePoseTransformData.load(
                densepose_transform_data_fpath
            )

        self.is_train = is_train

    def __call__(self, dataset_dict):
        """
        Args:
            dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format.

        Returns:
            dict: a format that builtin models in detectron2 accept
        """
        dataset_dict = copy.deepcopy(dataset_dict)  # it will be modified by code below
        image = utils.read_image(dataset_dict["file_name"], format=self.img_format)
        utils.check_image_size(dataset_dict, image)

        image, transforms = T.apply_transform_gens(self.augmentation, image)
        image_shape = image.shape[:2]  # h, w
        dataset_dict["image"] = torch.as_tensor(image.transpose(2, 0, 1).astype("float32"))

        if not self.is_train:
            dataset_dict.pop("annotations", None)
            return dataset_dict

        for anno in dataset_dict["annotations"]:
            if not self.mask_on:
                anno.pop("segmentation", None)
            if not self.keypoint_on:
                anno.pop("keypoints", None)

        # USER: Implement additional transformations if you have other types of data
        # USER: Don't call transpose_densepose if you don't need
        annos = [
            self._transform_densepose(
                utils.transform_instance_annotations(
                    obj, transforms, image_shape, keypoint_hflip_indices=self.keypoint_hflip_indices
                ),
                transforms,
            )
            for obj in dataset_dict.pop("annotations")
            if obj.get("iscrowd", 0) == 0
        ]

        if self.mask_on:
            self._add_densepose_masks_as_segmentation(annos, image_shape)

        instances = utils.annotations_to_instances(annos, image_shape, mask_format="bitmask")
        densepose_annotations = [obj.get("densepose") for obj in annos]
        if densepose_annotations and not all(v is None for v in densepose_annotations):
            instances.gt_densepose = DensePoseList(
                densepose_annotations, instances.gt_boxes, image_shape
            )

        dataset_dict["instances"] = instances[instances.gt_boxes.nonempty()]
        return dataset_dict

    def _transform_densepose(self, annotation, transforms):
        if not self.densepose_on:
            return annotation

        # Handle densepose annotations
        is_valid, reason_not_valid = DensePoseDataRelative.validate_annotation(annotation)
        if is_valid:
            densepose_data = DensePoseDataRelative(annotation, cleanup=True)
            densepose_data.apply_transform(transforms, self.densepose_transform_data)
            annotation["densepose"] = densepose_data
        else:
            # logger = logging.getLogger(__name__)
            # logger.debug("Could not load DensePose annotation: {}".format(reason_not_valid))
            DensePoseDataRelative.cleanup_annotation(annotation)
            # NOTE: annotations for certain instances may be unavailable.
            # 'None' is accepted by the DensePostList data structure.
            annotation["densepose"] = None
        return annotation

    def _add_densepose_masks_as_segmentation(
        self, annotations: List[Dict[str, Any]], image_shape_hw: Tuple[int, int]
    ):
        for obj in annotations:
            if ("densepose" not in obj) or ("segmentation" in obj):
                continue
            # DP segmentation: torch.Tensor [S, S] of float32, S=256
            segm_dp = torch.zeros_like(obj["densepose"].segm)
            segm_dp[obj["densepose"].segm > 0] = 1
            segm_h, segm_w = segm_dp.shape
            bbox_segm_dp = torch.tensor((0, 0, segm_h - 1, segm_w - 1), dtype=torch.float32)
            # image bbox
            x0, y0, x1, y1 = (
                v.item() for v in BoxMode.convert(obj["bbox"], obj["bbox_mode"], BoxMode.XYXY_ABS)
            )
            segm_aligned = (
                ROIAlign((y1 - y0, x1 - x0), 1.0, 0, aligned=True)
                .forward(segm_dp.view(1, 1, *segm_dp.shape), bbox_segm_dp)
                .squeeze()
            )
            image_mask = torch.zeros(*image_shape_hw, dtype=torch.float32)
            image_mask[y0:y1, x0:x1] = segm_aligned
            # segmentation for BitMask: np.array [H, W] of bool
            obj["segmentation"] = image_mask >= 0.5