Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from transformers import pipeline | |
model_id = "Sandiago21/whisper-large-v2-french" # update with your model id | |
pipe = pipeline("automatic-speech-recognition", model=model_id) | |
title = "Automatic Speech Recognition (ASR)" | |
description = """ | |
Demo for automatic speech recognition in French. Demo uses [Sandiago21/whisper-large-v2-french](https://huggingface.co/Sandiago21/whisper-large-v2-french) checkpoint, which is based on OpenAI's | |
[Whisper](https://huggingface.co/openai/whisper-large-v2) model and is fine-tuned in French Audio dataset | |
![Automatic Speech Recognition (ASR)"](https://datasets-server.huggingface.co/assets/huggingface-course/audio-course-images/--/huggingface-course--audio-course-images/train/2/image/image.png "Diagram of Automatic Speech Recognition (ASR)") | |
""" | |
def transcribe_speech(filepath): | |
output = pipe( | |
filepath, | |
max_new_tokens=256, | |
generate_kwargs={ | |
"task": "transcribe", | |
"language": "french", | |
}, # update with the language you've fine-tuned on | |
chunk_length_s=30, | |
batch_size=8, | |
) | |
return output["text"] | |
demo = gr.Blocks() | |
mic_transcribe = gr.Interface( | |
fn=transcribe_speech, | |
inputs=gr.Audio(source="microphone", type="filepath"), | |
outputs=gr.outputs.Textbox(), | |
tilte=title, | |
description=description, | |
) | |
file_transcribe = gr.Interface( | |
fn=transcribe_speech, | |
inputs=gr.Audio(source="upload", type="filepath"), | |
outputs=gr.outputs.Textbox(), | |
examples=[["./example.wav"]], | |
tilte=title, | |
description=description, | |
) | |
with demo: | |
gr.TabbedInterface( | |
[mic_transcribe, file_transcribe], | |
["Transcribe Microphone", "Transcribe Audio File"], | |
), | |
demo.launch() | |