File size: 6,353 Bytes
084b7bd
 
 
 
 
 
 
 
 
 
 
833685a
084b7bd
 
e44712b
084b7bd
 
 
 
 
 
 
 
1d16a46
 
 
 
084b7bd
41c98d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
084b7bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d16a46
084b7bd
 
 
 
 
 
 
1d16a46
 
bae429a
084b7bd
 
 
1d16a46
41c98d7
084b7bd
 
250ffea
084b7bd
 
833685a
d4a89f9
1d16a46
 
 
 
 
 
 
 
 
084b7bd
833685a
 
41c98d7
 
1d16a46
084b7bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline


device = "cuda:0" if torch.cuda.is_available() else "cpu"

# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v2", device=device)
greek_translation_pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-el")

# load text-to-speech checkpoint and speaker embeddings
model_id = "microsoft/speecht5_tts"  # update with your model id
# pipe = pipeline("automatic-speech-recognition", model=model_id)
model = SpeechT5ForTextToSpeech.from_pretrained(model_id)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7440]["xvector"]).unsqueeze(0)

processor = SpeechT5Processor.from_pretrained(model_id)

model_id_greek = "Sandiago21/speecht5_finetuned_google_fleurs_greek"
model_greek = SpeechT5ForTextToSpeech.from_pretrained(model_id_greek)
processor_greek = SpeechT5Processor.from_pretrained(model_id_greek)

replacements = [
    ("á", "a"),
    ("â", "a"),
    ("ã", "a"),
    ("í", "i"),
    ("á", "a"),
    ("í", "i"),
    ("ñ", "n"),
    ("ó", "o"),
    ("ú", "u"),
    ("ü", "u"),
    ("á", "a"),
    ("ç", "c"),
    ("è", "e"),
    ("ì", "i"),
    ("í", "i"),
    ("ò", "o"),
    ("ó", "o"),
    ("ù", "u"),
    ("ú", "u"),
    ("š", "s"),
    ("ï", "i"),
    ("à", "a"),
    ("â", "a"),
    ("ç", "c"),
    ("è", "e"),
    ("ë", "e"),
    ("î", "i"),
    ("ï", "i"),
    ("ô", "o"),
    ("ù", "u"),
    ("û", "u"),
    ("ü", "u"),
    ("ου", "u"),
    ("αυ", "af"),
    ("ευ", "ef"),
    ("ει", "i"),
    ("οι", "i"),
    ("αι", "e"),
    ("ού", "u"),
    ("εί", "i"),
    ("οί", "i"),
    ("αί", "e"),
    ("Ά", "A"),
    ("Έ", "E"),
    ("Ή", "H"),
    ("Ί", "I"),
    ("Ό", "O"),
    ("Ύ", "Y"),
    ("Ώ", "O"),
    ("ΐ", "i"),
    ("Α", "A"),
    ("Β", "B"),
    ("Γ", "G"),
    ("Δ", "L"),
    ("Ε", "Ε"),
    ("Ζ", "Z"),
    ("Η", "I"),
    ("Θ", "Th"),
    ("Ι", "I"),
    ("Κ", "K"),
    ("Λ", "L"),
    ("Μ", "M"),
    ("Ν", "N"),
    ("Ξ", "Ks"),
    ("Ο", "O"),
    ("Π", "P"),
    ("Ρ", "R"),
    ("Σ", "S"),
    ("Τ", "T"),
    ("Υ", "Y"),
    ("Φ", "F"),
    ("Χ", "X"),
    ("Ω", "O"),
    ("ά", "a"),
    ("έ", "e"),
    ("ή", "i"),
    ("ί", "i"),
    ("α", "a"),
    ("β", "v"),
    ("γ", "g"),
    ("δ", "d"),
    ("ε", "e"),
    ("ζ", "z"),
    ("η", "i"),
    ("θ", "th"),
    ("ι", "i"),
    ("κ", "k"),
    ("λ", "l"),
    ("μ", "m"),
    ("ν", "n"),
    ("ξ", "ks"),
    ("ο", "o"),
    ("π", "p"),
    ("ρ", "r"),
    ("ς", "s"),
    ("σ", "s"),
    ("τ", "t"),
    ("υ", "i"),
    ("φ", "f"),
    ("χ", "h"),
    ("ψ", "ps"),
    ("ω", "o"),
    ("ϊ", "i"),
    ("ϋ", "i"),
    ("ό", "o"),
    ("ύ", "i"),
    ("ώ", "o"),
    ("í", "i"),
    ("õ", "o"),
    ("Ε", "E"),
    ("Ψ", "Ps"),
]

def cleanup_text(text):
    for src, dst in replacements:
        text = text.replace(src, dst)
    return text


def synthesize_speech(text):
    text = cleanup_text(text)
    inputs = processor(text=text, return_tensors="pt")
    speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)

    return gr.Audio.update(value=(16000, speech.cpu().numpy()))


def translate_to_english(audio):
    outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate", "language": "english"})
    return outputs["text"]


def synthesise_from_english(text):
    text = cleanup_text(text)
    inputs = processor(text=text, return_tensors="pt")
    speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
    return speech.cpu().numpy()


def translate_from_english_to_greek(text):
    return greek_translation_pipe(text)[0]["translation_text"]


def synthesise_from_greek(text):
    text = cleanup_text(text)
    inputs = processor_greek(text=text, return_tensors="pt")
    speech = model_greek.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
    return speech.cpu()


def speech_to_speech_translation(audio):
    translated_text = translate_to_english(audio)
    translated_text = translate_from_english_to_greek(translated_text)
#     synthesised_speech = synthesise_from_english(translated_text)
#     translated_text = translate_from_english_to_greek(synthesised_speech)
    synthesised_speech = synthesise_from_greek(translated_text)
    synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
    return ((16000, synthesised_speech), translated_text)


title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Greek. Demo uses OpenAI's [Whisper Large v2](https://huggingface.co/openai/whisper-large-v2) model for speech translation, and [Sandiago21/speecht5_finetuned_google_fleurs_greek](https://huggingface.co/Sandiago21/speecht5_finetuned_google_fleurs_greek) checkpoint for text-to-speech, which is based on Microsoft's
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech, fine-tuned in Greek Audio dataset:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""

demo = gr.Blocks()

mic_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="microphone", type="filepath"),
    outputs=[gr.Audio(label="Generated Speech", type="numpy"), gr.outputs.Textbox()],
    title=title,
    description=description,
)

file_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="upload", type="filepath"),
    outputs=[gr.Audio(label="Generated Speech", type="numpy"), gr.outputs.Textbox()],
    examples=[["./example.wav"]],
    title=title,
    description=description,
)

with demo:
    gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])

demo.launch()