File size: 6,353 Bytes
084b7bd 833685a 084b7bd e44712b 084b7bd 1d16a46 084b7bd 41c98d7 084b7bd 1d16a46 084b7bd 1d16a46 bae429a 084b7bd 1d16a46 41c98d7 084b7bd 250ffea 084b7bd 833685a d4a89f9 1d16a46 084b7bd 833685a 41c98d7 1d16a46 084b7bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v2", device=device)
greek_translation_pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-el")
# load text-to-speech checkpoint and speaker embeddings
model_id = "microsoft/speecht5_tts" # update with your model id
# pipe = pipeline("automatic-speech-recognition", model=model_id)
model = SpeechT5ForTextToSpeech.from_pretrained(model_id)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7440]["xvector"]).unsqueeze(0)
processor = SpeechT5Processor.from_pretrained(model_id)
model_id_greek = "Sandiago21/speecht5_finetuned_google_fleurs_greek"
model_greek = SpeechT5ForTextToSpeech.from_pretrained(model_id_greek)
processor_greek = SpeechT5Processor.from_pretrained(model_id_greek)
replacements = [
("á", "a"),
("â", "a"),
("ã", "a"),
("í", "i"),
("á", "a"),
("í", "i"),
("ñ", "n"),
("ó", "o"),
("ú", "u"),
("ü", "u"),
("á", "a"),
("ç", "c"),
("è", "e"),
("ì", "i"),
("í", "i"),
("ò", "o"),
("ó", "o"),
("ù", "u"),
("ú", "u"),
("š", "s"),
("ï", "i"),
("à", "a"),
("â", "a"),
("ç", "c"),
("è", "e"),
("ë", "e"),
("î", "i"),
("ï", "i"),
("ô", "o"),
("ù", "u"),
("û", "u"),
("ü", "u"),
("ου", "u"),
("αυ", "af"),
("ευ", "ef"),
("ει", "i"),
("οι", "i"),
("αι", "e"),
("ού", "u"),
("εί", "i"),
("οί", "i"),
("αί", "e"),
("Ά", "A"),
("Έ", "E"),
("Ή", "H"),
("Ί", "I"),
("Ό", "O"),
("Ύ", "Y"),
("Ώ", "O"),
("ΐ", "i"),
("Α", "A"),
("Β", "B"),
("Γ", "G"),
("Δ", "L"),
("Ε", "Ε"),
("Ζ", "Z"),
("Η", "I"),
("Θ", "Th"),
("Ι", "I"),
("Κ", "K"),
("Λ", "L"),
("Μ", "M"),
("Ν", "N"),
("Ξ", "Ks"),
("Ο", "O"),
("Π", "P"),
("Ρ", "R"),
("Σ", "S"),
("Τ", "T"),
("Υ", "Y"),
("Φ", "F"),
("Χ", "X"),
("Ω", "O"),
("ά", "a"),
("έ", "e"),
("ή", "i"),
("ί", "i"),
("α", "a"),
("β", "v"),
("γ", "g"),
("δ", "d"),
("ε", "e"),
("ζ", "z"),
("η", "i"),
("θ", "th"),
("ι", "i"),
("κ", "k"),
("λ", "l"),
("μ", "m"),
("ν", "n"),
("ξ", "ks"),
("ο", "o"),
("π", "p"),
("ρ", "r"),
("ς", "s"),
("σ", "s"),
("τ", "t"),
("υ", "i"),
("φ", "f"),
("χ", "h"),
("ψ", "ps"),
("ω", "o"),
("ϊ", "i"),
("ϋ", "i"),
("ό", "o"),
("ύ", "i"),
("ώ", "o"),
("í", "i"),
("õ", "o"),
("Ε", "E"),
("Ψ", "Ps"),
]
def cleanup_text(text):
for src, dst in replacements:
text = text.replace(src, dst)
return text
def synthesize_speech(text):
text = cleanup_text(text)
inputs = processor(text=text, return_tensors="pt")
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
return gr.Audio.update(value=(16000, speech.cpu().numpy()))
def translate_to_english(audio):
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate", "language": "english"})
return outputs["text"]
def synthesise_from_english(text):
text = cleanup_text(text)
inputs = processor(text=text, return_tensors="pt")
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
return speech.cpu().numpy()
def translate_from_english_to_greek(text):
return greek_translation_pipe(text)[0]["translation_text"]
def synthesise_from_greek(text):
text = cleanup_text(text)
inputs = processor_greek(text=text, return_tensors="pt")
speech = model_greek.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
return speech.cpu()
def speech_to_speech_translation(audio):
translated_text = translate_to_english(audio)
translated_text = translate_from_english_to_greek(translated_text)
# synthesised_speech = synthesise_from_english(translated_text)
# translated_text = translate_from_english_to_greek(synthesised_speech)
synthesised_speech = synthesise_from_greek(translated_text)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return ((16000, synthesised_speech), translated_text)
title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Greek. Demo uses OpenAI's [Whisper Large v2](https://huggingface.co/openai/whisper-large-v2) model for speech translation, and [Sandiago21/speecht5_finetuned_google_fleurs_greek](https://huggingface.co/Sandiago21/speecht5_finetuned_google_fleurs_greek) checkpoint for text-to-speech, which is based on Microsoft's
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech, fine-tuned in Greek Audio dataset:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=[gr.Audio(label="Generated Speech", type="numpy"), gr.outputs.Textbox()],
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=[gr.Audio(label="Generated Speech", type="numpy"), gr.outputs.Textbox()],
examples=[["./example.wav"]],
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
demo.launch()
|