File size: 4,485 Bytes
abf616c 4818da1 abf616c 4818da1 abf616c 4818da1 abf616c 4818da1 abf616c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import numpy as np
import torch
import torch.nn as nn
import albumentations as A
from albumentations.pytorch import ToTensorV2
from huggingface_hub import hf_hub_download
import gradio as gr
class ObjectDetection:
def __init__(self, ckpt_path):
self.test_transform = A.Compose(
[
A.Resize(800, 600),
A.CLAHE(clip_limit=10, p=1),
A.Normalize(
[0.29278653, 0.25276296, 0.22975405],
[0.22653664, 0.19836408, 0.17775835],
),
ToTensorV2(),
],
)
self.model = torch.hub.load(
"facebookresearch/detr", "detr_resnet50", pretrained=False
)
in_features = self.model.class_embed.in_features
self.model.class_embed = nn.Linear(
in_features=in_features,
out_features=12,
)
self.labels = [
"Dog",
"Motorbike",
"People",
"Cat",
"Chair",
"Table",
"Car",
"Bicycle",
"Bottle",
"Bus",
"Cup",
"Boat",
]
model_ckpt = torch.load(ckpt_path, map_location=torch.device("cpu"))
self.model.load_state_dict(model_ckpt)
self.model.eval()
def predict(self, img):
score_threshold, iou_threshold = 0.05, 0.1
img_w, img_h = img.size
inp = self.test_transform(image=np.array(img.convert("RGB")))["image"]
out = self.model(inp.unsqueeze(0))
probas = out["pred_logits"].softmax(-1)[0, :, :-1]
bboxes = []
scores = []
for idx, bbox in enumerate(out["pred_boxes"][0]):
if not probas[idx].max().item() >= score_threshold:
continue
x_c, y_c, w, h = bbox.detach().numpy()
x1 = int((x_c - w * 0.5) * img_w)
y1 = int((y_c - h * 0.5) * img_h)
x2 = int((x_c + w * 0.5) * img_w)
y2 = int((y_c + h * 0.5) * img_h)
label_idx = probas[idx].argmax().item()
label = self.labels[label_idx] + f" {probas[idx].max().item():.2f}"
bboxes.append(((x1, y1, x2, y2), label))
scores.append(probas[idx].max().item())
selected_indices = self.non_max_suppression(
bboxes,
scores,
iou_threshold,
)
bboxes = [bboxes[i] for i in selected_indices]
return (img, bboxes)
def non_max_suppression(self, boxes, scores, iou_threshold):
if len(boxes) == 0:
return []
sorted_indices = sorted(
range(len(scores)), key=lambda i: scores[i], reverse=True
)
selected_indices = []
while sorted_indices:
current_index = sorted_indices[0]
selected_indices.append(current_index)
sorted_indices.pop(0)
ious = [
self.calculate_iou(boxes[current_index][0], boxes[i][0])
for i in sorted_indices
]
indices_to_remove = [i for i, iou in enumerate(ious) if iou > iou_threshold]
sorted_indices = [
i for j, i in enumerate(sorted_indices) if j not in indices_to_remove
]
return selected_indices
def calculate_iou(self, box1, box2):
"""
Calculate the Intersection over Union (IoU) of two bounding boxes.
Args:
box1: [x1, y1, x2, y2] for the first box.
box2: [x1, y1, x2, y2] for the second box.
Returns:
IoU value.
"""
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
intersection_area = max(0, x2 - x1) * max(0, y2 - y1)
box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])
iou = intersection_area / (box1_area + box2_area - intersection_area)
return iou
model_path = hf_hub_download(
repo_id="SatwikKambham/detr_low_light",
filename="detr.pt",
)
detector = ObjectDetection(ckpt_path=model_path)
iface = gr.Interface(
fn=detector.predict,
inputs=[
gr.Image(
type="pil",
label="Input",
height=400,
),
],
outputs=gr.AnnotatedImage(
height=400,
),
examples="Examples",
)
iface.launch()
|