Spaces:
Runtime error
Runtime error
from transformers import pipeline | |
import gradio as gr | |
import numpy as np | |
def predict(image): | |
result = pipe(image) | |
return image, [ | |
( | |
np.array(subsection["mask"]) / 255, | |
subsection["label"], | |
) | |
for subsection in result | |
] | |
pipe = pipeline( | |
"image-segmentation", | |
model="SatwikKambham/segformer-b0-finetuned-suim", | |
) | |
demo = gr.Interface( | |
fn=predict, | |
inputs=gr.Image( | |
type="pil", | |
height=400, | |
), | |
outputs=gr.AnnotatedImage( | |
color_map={ | |
"Background (waterbody)": "#000000", | |
"Human divers": "#0000FF", | |
"Aquatic plants and sea-grass": "#00FF00", | |
"Wrecks and ruins": "#FF0000", | |
"Robots (AUVs/ROVs/instruments)": "#FFFF00", | |
"Reefs and invertebrates": "#00FFFF", | |
"Fish and vertebrates": "#FF00FF", | |
"Sea-floor and rocks": "#FFFFFF", | |
}, | |
height=400, | |
), | |
examples="examples", | |
) | |
demo.launch() | |