SatwikKambham's picture
Updated app.py
8a63578
raw
history blame
1 kB
from transformers import pipeline
import gradio as gr
import numpy as np
def predict(image):
result = pipe(image)
return image, [
(
np.array(subsection["mask"]) / 255,
subsection["label"],
)
for subsection in result
]
pipe = pipeline(
"image-segmentation",
model="SatwikKambham/segformer-b0-finetuned-suim",
)
demo = gr.Interface(
fn=predict,
inputs=gr.Image(
type="pil",
height=400,
),
outputs=gr.AnnotatedImage(
color_map={
"Background (waterbody)": "#000000",
"Human divers": "#0000FF",
"Aquatic plants and sea-grass": "#00FF00",
"Wrecks and ruins": "#FF0000",
"Robots (AUVs/ROVs/instruments)": "#FFFF00",
"Reefs and invertebrates": "#00FFFF",
"Fish and vertebrates": "#FF00FF",
"Sea-floor and rocks": "#FFFFFF",
},
height=400,
),
examples="examples",
)
demo.launch()