Spaces:
Sleeping
Sleeping
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
import streamlit as st | |
import torch | |
from PIL import Image | |
# Default: Load the model on the available device(s) | |
def init_qwen_model(): | |
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto") | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") | |
return model, processor | |
MODEL, PROCESSOR = init_qwen_model() | |
# Streamlit app title | |
st.title("OCR Image Text Extraction") | |
st.subheader("I used Qwen2-VL-7B-Instruct model to get better accuracy but as it is running on CPU it takes 25-30 minutes to run it. So please have patience.") | |
# File uploader for images | |
uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"]) | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file) | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
# Add the spinner here while the model is processing | |
with st.spinner("Extracting text..."): | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "image", | |
"image": image, | |
}, | |
{"type": "text", "text": "Run Optical Character recognition on the image and don't translate Hindi to English."}, | |
], | |
} | |
] | |
# Preparation for inference | |
text = PROCESSOR.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = PROCESSOR( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
inputs = inputs.to("cpu") | |
# Inference: Generation of the output | |
generated_ids = MODEL.generate(**inputs, max_new_tokens=256) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
structured_output = PROCESSOR.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
)[0] | |
# Convert structured output to plain text | |
plain_text_output = " ".join(structured_output.split()) # Remove any extra spaces or line breaks | |
# Display extracted plain text after the spinner ends | |
st.subheader("Extracted Plain Text:") | |
st.write(plain_text_output) | |
# Keyword search functionality on plain text | |
st.subheader("Keyword Search") | |
search_query = st.text_input("Enter keywords to search within the extracted text") | |
if search_query: | |
# Check if the search query is in the plain text output | |
if search_query.lower() in plain_text_output.lower(): | |
# Highlight the search query in the plain text | |
highlighted_text = plain_text_output.replace(search_query, f"**{search_query}**", flags=re.IGNORECASE) | |
st.markdown(f"Matching Text: {highlighted_text}", unsafe_allow_html=True) | |
else: | |
st.write("No matching text found.") | |
else: | |
st.info("Please upload an image to extract text.") | |