from transformers import Qwen2VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info import streamlit as st import torch from PIL import Image # Default: Load the model on the available device(s) @st.cache_resource def init_qwen_model(): model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto") processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") return model, processor MODEL, PROCESSOR = init_qwen_model() # Streamlit app title st.title("OCR Image Text Extraction") st.subheader("I used Qwen2-VL-7B-Instruct model to get better accuracy but as it is running on CPU it takes 25-30 minutes to run it. So please have patience.") # File uploader for images uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"]) if uploaded_file is not None: image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image", use_column_width=True) # Add the spinner here while the model is processing with st.spinner("Extracting text..."): messages = [ { "role": "user", "content": [ { "type": "image", "image": image, }, {"type": "text", "text": "Run Optical Character recognition on the image and don't translate Hindi to English."}, ], } ] # Preparation for inference text = PROCESSOR.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = PROCESSOR( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cpu") # Inference: Generation of the output generated_ids = MODEL.generate(**inputs, max_new_tokens=256) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] structured_output = PROCESSOR.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False )[0] # Convert structured output to plain text plain_text_output = " ".join(structured_output.split()) # Remove any extra spaces or line breaks # Display extracted plain text after the spinner ends st.subheader("Extracted Plain Text:") st.write(plain_text_output) # Keyword search functionality on plain text st.subheader("Keyword Search") search_query = st.text_input("Enter keywords to search within the extracted text") if search_query: # Check if the search query is in the plain text output if search_query.lower() in plain_text_output.lower(): # Highlight the search query in the plain text highlighted_text = plain_text_output.replace(search_query, f"**{search_query}**", flags=re.IGNORECASE) st.markdown(f"Matching Text: {highlighted_text}", unsafe_allow_html=True) else: st.write("No matching text found.") else: st.info("Please upload an image to extract text.")