Spaces:
Running
Running
import streamlit as st | |
import base64 | |
import streamlit as st | |
import plotly.express as px | |
df = px.data.iris() | |
def get_img_as_base64(file): | |
with open(file, "rb") as f: | |
data = f.read() | |
return base64.b64encode(data).decode() | |
#img = get_img_as_base64("https://catherineasquithgallery.com/uploads/posts/2021-02/1612739741_65-p-goluboi-fon-tsifri-110.jpg") | |
page_bg_img = f""" | |
<style> | |
[data-testid="stAppViewContainer"] > .main {{ | |
background-image: url("https://wallpapercave.com/wp/wp11966930.jpg"); | |
background-size: 115%; | |
background-position: top left; | |
background-repeat: no-repeat; | |
background-attachment: local; | |
}} | |
[data-testid="stSidebar"] > div:first-child {{ | |
background-image: url("https://ibb.co/ZBkdJRg"); | |
background-size: 115%; | |
background-position: center; | |
background-repeat: no-repeat; | |
background-attachment: fixed; | |
}} | |
[data-testid="stHeader"] {{ | |
background: rgba(0,0,0,0); | |
}} | |
[data-testid="stToolbar"] {{ | |
right: 2rem; | |
}} | |
div.css-1n76uvr.e1tzin5v0 {{ | |
background-color: rgba(238, 238, 238, 0.5); | |
border: 10px solid #EEEEEE; | |
padding: 5% 5% 5% 10%; | |
border-radius: 5px; | |
}} | |
</style> | |
""" | |
st.markdown(page_bg_img, unsafe_allow_html=True) | |
import tensorflow as tf | |
from tensorflow import keras | |
import numpy as np | |
import matplotlib.pyplot as plt | |
################################################################################################ | |
#Тут нужно будет добаить модель. Ниже пример: | |
# # Загрузка модели | |
# model = keras.models.load_model('cgan_model.h5') | |
# # Задание размерностей входных данных модели | |
# latent_dim = 128 | |
# num_classes = 10 | |
# # Функция для генерации изображения | |
# def generate_image(number): | |
# random_latent_vector = tf.random.normal(shape=(1, latent_dim)) | |
# one_hot_label = tf.one_hot([number], num_classes) | |
# input_data = tf.concat([random_latent_vector, one_hot_label], axis=1) | |
# generated_image = model.predict(input_data) | |
# generated_image = generated_image.reshape(28, 28) | |
# generated_image = tf.image.resize(generated_image[None, ...], (28, 28))[0] # Добавлено [None, ...] для добавления измерения | |
# return generated_image | |
################################################################################################ | |
#Оформление | |
col1, col2, col3 = st.columns([1,5,1]) | |
with col2: | |
st.title('Название модели') | |
col1, col2, col3 = st.columns([2,5,2]) | |
with col2: | |
number = st.slider('Выберите число:', 0, 9, step=1) | |
################################################################################################ | |
# Часть, отображаемая на странице | |
# number = st.slider('Выберите число:', 0, 9, step=1) | |
# #col1.subheader("Гистограмма total_bill:") | |
# # Генерация и отображение изображения | |
# generated_image = generate_image(number) | |
# generated_image_np = generated_image.numpy() # Преобразование в массив NumPy | |
# fig, ax = plt.subplots() | |
# ax.scatter([1, 2], [1, 2], color='black') | |
# plt.imshow(generated_image_np, cmap='gray') | |
# plt.axis('off') | |
# fig.set_size_inches(3, 3) | |
# st.pyplot(fig) | |
################################################################################################ | |
#st.markdown("<div style='text-align: center; font-size: 25px;'> ", unsafe_allow_html=True) | |
#st.markdown("<div style='text-align: center; font-size: 25px;'> ", unsafe_allow_html=True) |